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Abstract
In this study, we discussed the functional 
relationship between Bayesian and classical 
estimators of parameters of some discrete and 
continuous probability distributions. The 
maximum likelihood estimator (MLE) is used as 
representative of classical inference while 
posterior mean and posterior mode represent 
Bayesian estimators under squared error loss and 
zero one loss functions respectively. The posterior 
means (modes) are expressed as a function of 
corresponding likelihood estimators and prior 
means (modes). This functional relationship 
depicts that maximum likelihood estimator can be 
considered as a special case of their Bayesian 
counterpart if values of the hyper-parameters are 
set to zero. Further the relationship is identical for 
all the distributions except Maxwell and Rayleigh.      

Keywords: Squared error loss function; Zero one 
loss function; Maximum likelihood estimator; 
Posterior mean; Posterior mode; Conjugate prior

Introduction
The relationship between Bayesian and classical 
estimation using the continuous uniform distribution 
and exponential distribution respectively described 
by Rossman, et al. (1998) and Elfessi and Reineke 
(2001) . Aslam (2003) and Hahn (2006) discuss prior 
elicitation while Tahir and Hussain (2008) compare 
uninformative priors for number of defects model. 
Aslam and Tahir (2010) focus Bayesian and Classical 
Analysis of Time-to-Failure Model. The Bayesian 
approach is preferred to the classical approach 
because the former can utilize the prior information 
in a formal way, satisfies the axioms of coherence 
and utilize decision theory. This study provides the 
relationship between Bayesian and classical 
estimators. Bernoulli distribution, Binomial 
distribution, Geometric distribution, Negative 
Binomial distribution, Exponential distribution, 
Poisson distribution, Power distribution, Maxwell 
distribution and Rayleigh distribution are used as 
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sampling distributions in this paper. Beta distribution, 
Gamma distribution and Square root inverted gamma 
distribution are used as prior distributions.

Materials and Methods
The Likelihood Function and MLE 
The likelihood function summarizes the information 
contained in the sample. Maximum likelihood 
estimates make use of sample data only and have a 
number of desirable properties.
Posterior distribution and Bayes estimates
Bayesian Statistics utilizes prior information in a 
formal way and represents the knowledge about the 
parameter of sample data prior to observing the data. 
The priors used in this paper are all conjugate priors. 
The parameters of the prior distribution are called 
hyper-parameters. The posterior distribution 
summarizes two sources of information, the prior 
information through the prior distribution and the 
sample information via the likelihood function. 
Unlike classical Statistics, Bayesian school of 
thought considers the unknown parameter as a 
random variable and the inferences and decisions are 
based on posterior distribution of the unknown 
parameter.

The prior distribution of parameter  of 
Bernoulli distribution is assumed as a Binomial 
distribution with hyper-parameters ‘ a ’ and ‘ b ’. So 
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from the exponential distribution with parameter 
and the prior distribution of  is a Gamma 
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of the exponential distribution we would have 
assumed Inverted Gamma prior as conjugate prior. 
The posterior distribution of parameter  of poisson 
distribution using Gamma distribution as a prior is 
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The posterior distribution of parameter of Power 
Function distribution  using Gamma distribution as 
a prior distribution for the given data is 
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Bayesian analysis of power function mixture 
distribution. It is assumed that the prior distribution 
of Maxwell parameter  is a Square Root Inverted 

Gamma distribution with hyper-parameters ‘ a ’ and 
‘ b ’, hence the posterior distribution of  is the 
Square Root Inverted Gamma distribution
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Results and Discussion
Unlike Rossman, et al. (1998) and Elfessi and 
Reineke (2001), the relationship between Bayesian 
and classical estimators based on posterior mean and 
posterior mode are given in Table 1 and Table 2 for 
parameters of a number of distributions. Table 1 
(Table 2) depicts that the posterior means (posterior 
modes) are obtained by the sum of numerators of the 
prior mode and of the MLE divided by the sum of 
denominators of the same except the Rayleigh and 
Maxwell cases. In Maxwell and Rayleigh cases it is 
observed that the squared posterior modes are 
obtained by the sum of squared numerators of the 
prior mode and of the MLE divided by the sum of 
squared denominators of the same.
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Table 2 Relationship between MLEs, Prior Modes and Posterior Modes
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The Bayes estimates, posterior mean and posterior 
mode, reduce to the Classical estimates, maximum 
likelihood estimates, if values of the hyper-
parameters are set to zero. Hence the maximum 
likelihood estimates can be considered as special case 
of the Bayes estimates.
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Abstract

In this study, we discussed the functional relationship between Bayesian and classical estimators of parameters of some discrete and continuous probability distributions. The maximum likelihood estimator (MLE) is used as representative of classical inference while posterior mean and posterior mode represent Bayesian estimators under squared error loss and zero one loss functions respectively. The posterior means (modes) are expressed as a function of corresponding likelihood estimators and prior means (modes). This functional relationship depicts that maximum likelihood estimator can be considered as a special case of their Bayesian counterpart if values of the hyper-parameters are set to zero. Further the relationship is identical for all the distributions except Maxwell and Rayleigh.      
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Introduction

The relationship between Bayesian and classical estimation using the continuous uniform distribution and exponential distribution respectively described by  Rossman, et al. (1998) and Elfessi and Reineke (2001) . Aslam (2003) and Hahn (2006) discuss prior elicitation while Tahir and Hussain (2008) compare uninformative priors for number of defects model. Aslam and Tahir (2010) focus Bayesian and Classical Analysis of Time-to-Failure Model. The Bayesian approach is preferred to the classical approach because the former can utilize the prior information in a formal way, satisfies the axioms of coherence and utilize decision theory. This study provides the relationship between Bayesian and classical estimators. Bernoulli distribution, Binomial distribution, Geometric distribution, Negative Binomial distribution, Exponential distribution, Poisson distribution, Power distribution, Maxwell distribution and Rayleigh distribution are used as 
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sampling distributions in this paper. Beta distribution, Gamma distribution and Square root inverted gamma distribution are used as prior distributions.

Materials and Methods

The Likelihood Function and MLE 

The likelihood function summarizes the information contained in the sample. Maximum likelihood estimates make use of sample data only and have a number of desirable properties. 

Posterior distribution and Bayes estimates


Bayesian Statistics utilizes prior information in a formal way and represents the knowledge about the parameter of sample data prior to observing the data. The priors used in this paper are all conjugate priors. The parameters of the prior distribution are called hyper-parameters. The posterior distribution summarizes two sources of information, the prior information through the prior distribution and the sample information via the likelihood function. Unlike classical Statistics, Bayesian school of thought considers the unknown parameter as a random variable and the inferences and decisions are based on posterior distribution of the unknown parameter.
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Results and Discussion

Unlike Rossman, et al. (1998) and Elfessi and Reineke (2001), the relationship between Bayesian and classical estimators based on posterior mean and posterior mode are given in Table 1 and Table 2 for parameters of a number of distributions. Table 1 (Table 2) depicts that the posterior means (posterior modes) are obtained by the sum of numerators of the prior mode and of the MLE divided by the sum of denominators of the same except the Rayleigh and Maxwell cases. In Maxwell and Rayleigh cases it is observed that the squared posterior modes are obtained by the sum of squared numerators of the prior mode and of the MLE divided by the sum of squared denominators of the same.
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Table 2 Relationship between MLEs, Prior Modes and Posterior Modes
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The Bayes estimates, posterior mean and posterior mode, reduce to the Classical estimates, maximum likelihood estimates, if values of the hyper-parameters are set to zero. Hence the maximum likelihood estimates can be considered as special case of the Bayes estimates.
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