
70

Pak. j. life soc. Sci. (2011), 9(1): 70-79

Comparative Study on Performance of Scheduling Heuristics in Hetero-
geneous Computing Environment
Ehsan Ul lah Munir*, Sheraz Anjum 1 , Muhammad Wasi f Nisar , Waqas Anwar 2 and Kashi f
Ayyub
Depar tment of Computer Science, COMSATS Ins t i tu te of Informat ion Technology, Quaid
Avenue, Wah Cant t , Pakis tan;
1 Department of Computer Engineer ing, COMSATS Ins t i tu te of Informat ion Technology, Wah
Cant t , Pakis tan;
2 Department of Computer Science, COMSATS Ins t i tu te of Informat ion Technology,
Abbot t abad, Pakis tan

Abstract
Heterogeneous computing (HC) environment
consists of different resources connected with
high-speed links to provide a variety of
computational capabilities for computing-
intensive applications having multifarious
computational requirements. The problem of
optimal assignment of tasks to machines in HC
environment is proven to be NP-complete
requiring use of heuristics to find the near optimal
solution. In this work we conduct a performance
study of task scheduling heuristics in HC
environment. In present study overall
implemented 16 heuristics, among them 7 are
proposed in this paper. The range bar for the
average makespan of each heuristic shows a 95%
confidence interval for the corresponding average
makespan. From the values it is clear that for high
values of machineV H16 is the best heuristic. And in

all other cases one of the preoposed heuristic H2
or H5 outperforms all other heuristics. Based on
experimental results, specify the circumstances
under which one heuristic will outperform the
others.

Keywords: Heterogeneous computing, Task schedu-
ling, Performance evaluation, Task Partitioning
heuristic

Introduction
Heterogeneous computing (HC) environment consists
of different resources connected with high-speed
links to provide a variety of computational
capabilities for computing - intensive applications

 having multifarious computational requirements (Ali
et al., 2005). In HC environment an application is
decomposed into various tasks and each task is
assigned to one of the machines, which is best suited
for its execution to minimize the total execution time.
Therefore, an efficient assignment scheme
responsible for allocating the application tasks to the
machines is needed; formally this problem is named
task scheduling (El-Rewini et al., 1994). Developing
such strategies is an important area of research and it
has gained a lot of interest from researchers
(Barbulescu et al., 2004; Shestak et al., 2005; Shivle
et al., 2006). The problem of task scheduling has
gained tremendous attention and has been extensively
studied in other areas such as computational grids
(Foster and Kesselman, 1999) and parallel programs
(Kwok and Ahmad, 1999).
The problem of an optimal assignment of tasks to
machines is proven to be NP-complete requiring use
of heuristics to find the near-optimal solution (Baca,
1989; Ibarra and Kim, 1977). Plethora of heuristics
has been proposed for assignment of tasks to
machines in HC environment (Maheswaran et al.,
1999; Wu et al., 2000; Sakellariou and Zhao, 2004;
Kwok et al., 2006; Kim et al., 2007). Each heuristic
has different underlying assumptions to produce near
optimal solution however no work reports which
heuristic should be used for a given set of tasks to be
executed on different machines.
Provided with a set of tasks  1 2, ,..., mt t t , a set of

machines  1 2, ,..., nm m m and expected time to compute

(ETC) of each task it on each machine jm ,

 ,i jETC t m  1 ,1i m j n    , in the current study

we find out the task assignment strategy that gives
the minimum makespan.
For task selection in heterogeneous environment
different criteria can be used, e.g. minimum,
maximum or average of expected execution time
across all machines. In current work we propose a
new heuristic based on task partitioning, which

Pakistan Journal of
Life and Social Sciences

*Corresponding Author: Ehsan Ullah Munir,
Department of Computer Science,
COMSATS Institute of Information Technology,
Wah Cantt , Pakistan
Email: ehsanmunir @comsats.edu.pk

Performance of scheduling heuristics

71

consider minimum (min), maximum (max), average
(avg), median (med) and standard deviation (std) of
expected execution time of task on different
machines as selection criteria. We call each selection
criterion a key. Each heuristic uses only one key.
Scheduling process for the proposed heuristics works
like this; all the tasks are sorted in decreasing order
of their key, then these tasks are partitioned into k
segments and after this scheduling is performed in
each segment.
A large number of experiments were conducted on
synthetic datasets; Coefficient of Variation (COV)
based method was used for generating synthetic
datasets, which provides greater control over spread
of heterogeneity (Ali et al., 2000). A comparison
among existing heuristics is conducted and new
heuristics are proposed. Extensive simulation results
illustrate the circumstances when one heuristic would
outperform other heuristics in terms of average
makespan.

 Let  1 2, ,..., mT t t t be a set of tasks,

 1 2, ,..., nM m m m be a set of machines, and the

expected time to compute (ETC) is a m n matrix
where the element ijETC represents the expected

execution time of task it on machine jm . For clarity,

we denote ijETC by  ,i jETC t m in the rest of the

paper. Machine availability time,  jMAT m , is the

earliest time machine jm can complete the execution

of all the tasks that have previously been assigned to
it (based on the ETC entries for those tasks). The
completion time (CT) of task it on machine jm is

equal to the execution time of it on jm plus the

machine availability time of jm i.e.

     , ,i j i j jCT t m ETC t m MAT m  .

Makespan (MS) is equal to the maximum value of the
completion time of all tasks i.e.

 max jMS MAT m for  1 j n 

Provided with T, M and ETC our objective is to find
the task assignment strategy which minimizes
makespan.

Materials and Methods
Task partitioning heuristic
In heterogeneous environment for task selection
different criteria can be used, examples are minimum,
maximum or average of expected execution time
across all machines. In task partitioning heuristic we
use minimum (min), maximum (max), average (avg),
median (med) and standard deviation (std) of
expected execution time of task on different
machines as selection criteria; hereafter referred to as
key. Given a set of tasks  1 2, ,..., mT t t t , a set of

machines  1 2, ,..., nM m m m , expected time to

compute (ETC) matrix then the working of proposed
heuristic can be explained as follows: we compute
the sorting key for each task (for each heuristic only
one key will be used for sorting), then we sort the
tasks in decreasing order of their sorting key. Next
the tasks are partitioned into k disjoint equal sized
groups. In last, tasks are scheduled in each group xg

using the following procedure:

Procedure 1

a) for each task it in a group xg find machine jm which completes the task at earliest.

 b) If machine jm is available i.e. no task is assigned to machine then assign task to machine and remove it from list

of tasks.
 c) If there is already task kt assigned to machine i.e. machine jm is not available then compute the difference

between the minimum earliest completion time and the second smallest earliest completion time on all machines for

it and kt respectively.

1. If the difference value for it is larger than that of kt then it is assigned to machine jm .

2. If the difference value for it is less than that of kt , then no changes to the assignment .

3. If the differences are equal, we compute the difference between the minimum earliest completion time
and the third smallest earliest completion time for it and kt respectively. And repeat 1-3. Every time if

step 3 is selected, the difference between the minimum earliest completion time and the next earliest
completion time (e.g. the fourth, the fifth…) for it and kt are computed respectively. If all the

differences are the same then the task is selected deterministically i.e. the oldest task is chosen.

Now the proposed Task partitioning algorithm can be summed up in the following steps:

Munir et al

72

Task Partitioning Heuristic
1. Compute the sorting key for each task:

Sub-policy1 (avg): Compute the average value of each row in ETC matrix
 , / .i i j

j

key ETC t m n 
Sub-policy2 (min): Compute the minimum value of each row in ETC matrix

 min , .i i jj
key ETC t m

Sub-policy3 (max): Compute the maximum value of each row in ETC matrix

 max , .i i j
j

key ETC t m

Sub-policy4 (med): Compute the median value of each row in ETC matrix

 , .i i j
j

key med ETC t m

Sub-policy5 (std): Compute the standard deviation value of each row in ETC matrix

 , .i i j
j

key std ETC t m

2. Sort the tasks in decreasing order of their sorting key (for each heuristic only one key will be used for sorting).
3. Partition the tasks evenly into k segments.
4. Apply the procedure 1 for scheduling each segment.

Table 1 Scenario ETC matrix
Task no m1 m2 m3 m4

t1 17 19 31 17
t2 2 4 2 5
t3 18 11 12 7
t4 3 4 6 13
t5 4 2 2 3
t6 10 9 11 7
t7 13 26 28 10
t8 9 6 4 4
t9 10 13 8 5
t10 5 4 7 9
t11 7 9 6 13
t12 14 6 12 8
t13 14 8 12 20
t14 16 9 16 15
t15 18 11 5 7

Figure 1 Visual representation of task assignment
in task partitioning heuristic

Table 2 Task partitioning
Task no m1 m2 m3 m4 Avg

t1 17 19 31 17 21.00
t7 13 26 28 10 19.25
t14 16 9 16 15 14.00
t13 14 8 12 20 13.50
t3 18 11 12 7 12.00
t15 18 11 5 7 10.25
t12 14 6 12 8 10.00
t6 10 9 11 7 9.25
t9 10 13 8 5 9.00
t11 7 9 6 13 8.75
t4 3 4 6 13 6.50
t10 5 4 7 9 6.25
t8 9 6 4 4 5.75
t2 2 4 2 5 3.25
t5 4 2 2 3 2.75

A scenario of ETC is given in Table 1 to describe the
working of proposed heuristic. All machines are
assumed to be idle for this case. Sorting key used for
the algorithm is average (avg) i.e. tasks are sorted in
decreasing order of their average value. Table 2
shows the task partitioning; tasks are partitioned into
three segments which implies k = 3. Table 3 shows
how the results are derived using procedure 1. Figure
1 gives the visual representation of task assignment
for proposed heuristic.
Heuristics notation
In task partitioning heuristic tasks are sorted based on
average, minimum, maximum, median and standard
deviation and each heuristic is named as TPAvg,
TPMin, TPMax, TPMed and TPStd. The algorithms
Segmented min-min (med) and Segmented min-min
(std) are also implemented for the evaluation

Performance of scheduling heuristics

73

purpose. The naming conventions and source
information for all existing and proposed heuristics
are detailed in Table 4.

Table 3 Execution process of Procedure 1 on each
group

Execution process on group 1
1st pass min. CT difference
t1→ m1 17 0
t14→ m2 9 6
t3→ m4 7 4
2nd pass min. CT difference
t7→ m4 17 11
t13→ m3 12 5

execution process on group 2
1st pass min. CT difference
t15→ m3 17 3
t12→ m2 15 9
2nd pass min. CT difference
t6→ m2 24 0
t9→ m4 22 3
t11→ m3 23 1

execution process on group 3
1st pass min. CT difference
t4→ m1 20 8
2nd pass min. CT difference
t10→ m1 25 3
t8→ m4 26 1
3rd pass min. CT difference
t2→ m3 25 2
4th pass min. CT difference
t5→ m2 26 1

Results and Discussion
Dataset
In the experiments, COV based ETC generation
method is used to simulate different HC
environments by changing the parameters task , taskV

and machineV , which represent the mean task execution

time, the task heterogeneity, and the machine
heterogeneity, respectively. The COV based method
provides greater control over the spread of the
execution time values than the common range-based
method used previously (Braun et al., 2001; Ritchie
and Levine, 2003; Shivle et al., 2005).
The COV-based ETC generation method works as
follows (Ali et al., 2000): First, a task vector, q, of
expected execution times with the desired task
heterogeneity is generated following gamma
distribution with mean task and standard

deviation task taskV  . The input parameter task is used

to set the average of the values in q. The input
parameter taskV is the desired coefficient of variation of

the values in q. The value of taskV quantifies task

heterogeneity, and is larger for high task
heterogeneity. Each element of the task vector q is
then used to produce one row of the ETC matrix
following gamma distribution with mean  q i and

standard deviation   machineq i V such that the desired

coefficient of variation of values in each row is

machineV , another input parameter. The value of

machineV quantifies machine heterogeneity, and is larger

for high machine heterogeneity.
Comparative performance evaluation
The performance of the heuristic algorithm is
evaluated by the average makespan of 1000 results
on 1000 ETCs generated by the same parameters. In
all the experiments, the size of ETCs is 512 16 , the
value of k = 3, the mean of task execution time task is

1000, and the task COV taskV is in  0.1, 2 while the

machine COV machineV is in  0.1, 1.1 .

The motivation behind choosing such heterogeneous
ranges is that in real situation there is more variability
across execution times for different tasks on a given
machine than the execution time for a single task
across different machines.
The range bar for the average makespan of each
heuristic shows a 95% confidence interval for the
corresponding average makespan. This interval
represents the likelihood that makespans of task
assignment for that type of heuristic fall within the
specified range. That is, if another ETC matrix (of the
same type) is generated, and the specified heuristic
generates a task assignment, then the makespan of the
task assignment would be within the given interval
with 95% certainty. In our experiments we have also
considered two metrics in comparison of heuristics.
Such metrics have also been considered by
(Sakellariou and Zhao, 2004)
 The number of best solutions (denoted by NB) is

the number of times a particular method was the
only one that produced the shortest makespan.

 The number of best solutions equal with another
method (denoted by NEB), which counts those
cases where a particular method produced the
shortest makespan but at least one other method
also achieved the same makespan. NEB is the
complement to NB.

The proposed heuristics are compared with 11
existing heuristics. Experiments are performed with
different ranges of task and machine heterogeneity.
In the first experiment we have fixed the value of

taskV = 2 and then increase the value of machineV from 0.1
to 1.1 with increment of 0.2 in each step. The results
of NB and NEB are shown in the Table 5. From the
values it is clear that for high values of machineV H16 is
the best heuristic. And in all other cases one of the

Munir et al

74

proposed heuristic H2 or H5 outperforms all other
heuristics. Figure 2 gives the comparison of average
makespan of the all heuristics considered.
In the second experiment we have fixed the value of

taskV = 1.1 and then increase the value of machineV from
0.1 to 1.1 with increment of 0.2 in each step. The

results of NB and NEB are shown in the Table 6.
From the values it is clear that here in all the cases
one of the proposed heuristic H2 or H5 is best. Figure
3 gives the comparison of average makespan of all
the heuristics consider here.

Table 4 Summary of compared heuristics
No Name Reference No Name Reference
H1 TPAvg New H9 Smm-avg (Wu, M.Y et al)
H2 TPMin New H10 Smm-min (Wu, M.Y et al)
H3 TPMax New H11 Smm-max (Wu, M.Y et al)
H4 TPMed New H12 Smm-med New
H5 TPStd New H13 Smm-std New
H6 Min-min (Freund R.F et al) H14 MCT (Maheswaran, M et al)
H7 Max-min (Freund R.F et al) H15 minSD (Luo, P et al)
H8 Sufferage (Maheswaran, M et al) H16 HTF (Yarmolenko, V et al)

Table 5 NB and NEB values table when fix taskV = 2

Cov of tasks H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
0.1 NB 86 197 169 78 245 0 0 96 0 0 0 0 0 0 0 4

NEB 97 27 48 92 29 0 2 18 0 0 0 0 0 0 0 2
0.3 NB 101 252 112 132 90 0 0 213 0 1 0 0 0 0 0 0

NEB 62 54 48 62 52 0 1 49 0 0 0 0 0 0 0 4
0.5 NB 101 352 98 106 65 0 0 92 0 1 1 1 1 0 0 19

NEB 105 84 104 103 99 0 1 90 1 0 1 1 0 0 0 10
0.7 NB 82 350 62 89 47 0 0 45 1 2 4 1 2 0 0 146

NEB 100 59 98 96 99 0 2 89 0 0 2 1 1 0 0 32
0.9 NB 60 199 43 62 44 0 0 11 5 2 2 4 0 0 0 381

NEB 103 78 115 103 110 0 14 94 1 0 2 0 1 2 0 90
1.1 NB 17 69 22 21 16 0 0 9 0 1 0 3 1 0 0 575

NEB 167 156 160 163 160 0 47 156 1 0 3 1 2 5 0 202

(a) (b) (c)

 (d) (e) (f)
Figure 2 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3,

(c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

Performance of scheduling heuristics

75

Table 6 NB and NEB values table when fix taskV = 1.1

Cov of
tasks

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0.1 NB 141 159 150 150 372 0 0 0 0 0 0 0 0 0 0 0
NEB 24 2 5 21 6 0 0 0 0 0 0 0 0 0 0 0

0.3 NB 139 284 199 161 211 0 0 0 0 0 0 0 0 0 0 0
NEB 2 4 2 3 1 0 0 0 0 0 0 0 0 0 0 0

0.5 NB 129 445 154 127 142 0 0 0 0 0 0 0 0 0 0 0
NEB 1 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0

0.7 NB 84 613 97 82 102 0 0 0 3 10 1 2 0 0 0 0
NEB 3 2 4 3 1 0 0 0 0 0 0 0 0 0 0 0

0.9 NB 78 586 80 63 91 0 0 0 8 59 5 14 1 0 0 2
NEB 6 8 6 7 4 0 0 1 0 2 0 0 0 0 0 1

1.1 NB 66 505 76 73 63 0 0 1 28 24 4 24 4 0 0 92
NEB 20 24 17 16 14 0 0 10 3 0 1 1 1 0 0 11

 (a) (b) (c)

(d) (e) (f)
Figure 3 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3,

(c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

Table 7 NB and NEB values when fix taskV = 0.6

Cov of tasks H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
0.1 NB 81 80 78 79 682 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.3 NB 73 42 143 76 663 0 0 0 0 0 0 0 0 0 0 0

NEB 1 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0
0.5 NB 84 20 254 118 520 0 0 0 0 0 0 0 0 0 0 0

NEB 3 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0
0.7 NB 127 13 285 130 441 0 0 0 0 0 0 0 0 0 0 0

NEB 2 0 3 1 2 0 0 0 0 0 0 0 0 0 0 0
0.9 NB 150 33 313 144 354 0 0 0 0 0 0 0 0 0 0 0

NEB 2 0 2 4 4 0 0 0 0 0 0 0 0 0 0 0
1.1 NB 138 124 245 158 313 0 0 0 0 6 0 0 0 0 0 1

NEB 4 9 5 8 5 0 0 0 0 1 0 0 0 0 0 0

Munir et al

76

In the third experiment we have fixed the value of

taskV = 0.6 and then increase the value of machineV from

0.1 to 1.1 with increment of 0.2 in each step. The
results of NB and NEB are shown in the Table 7.
From the values it is clear that here in all the cases
proposed heuristic H5 outperforms all other
heuristics. Figure 4 gives the comparison of average
makespan of all the heuristics.
In the fourth experiment we have fixed the value of

taskV = 0.1 and then increase the value of machineV from

0.1 to 1.1 with increment of 0.2 in each step. The
results of NB and NEB are shown in the Table 8.
From the values it is clear that here in all the cases
proposed heuristic H5 outperforms all other
heuristics. Figure 5 gives the comparison of the
average makespan of all the heuristics.

Algorithm to find best heuristic
Based on the values of taskV and machineV we divide

ETC into three different regions. If the values of taskV

and machineV are high (here taskV = 2 and 0.9 <=

machineV <= 1.1) then ETC falls in the region 1, if either

of them is medium (here taskV = 1.1 or 0.3 <= machineV <

=0.7) then it falls in region 2 and if either of them is
low (here 0.1 <= taskV <= 0.6 or 0.1 <= machineV <= 0.2)

then it falls in region 3. Fig. 6 shows the three regions
and best heuristic for each region.
The procedure for finding a best heuristic is given
below in Algorithm Best Heuristic, which suggests
the best heuristic depending on ETC type.

(a) (b) (c)

(d) (e) (f)
Figure 4 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3,

(c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

Table 8 NB and NEB values when fix taskV = 0.1

Cov of tasks H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
0.1 NB 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.3 NB 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.5 NB 0 0 14 0 986 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.7 NB 0 0 84 5 910 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.9 NB 8 0 215 10 763 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.1 NB 41 0 311 28 619 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Performance of scheduling heuristics

77

Best heuristic
Input: expected time to compute matrix (ETC)
Output: best heuristic
Compute the taskV and machineV

if taskV is high and machineV is high then

ETC belongs to region1
if taskV is medium or machineV is medium then

ETC belongs to region2
if taskV is low or machineV is low then

ETC belongs to region3
end if switch(region)

case region1: return H16
case region2: return H2
case region3: return H5

end switch

(a) (b) (c)

(d) (e) (f)

Figure 5 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3,
(c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

COV of Machines
0.1 0.3 0.5 0.7 0.9 1.1

2 H5 H2 H2 H2 H16 H16
1.1 H5 H2 H2 H2 H2 H2
0.6 H5 H5 H5 H5 H5 H5

Cov of
Tasks

0.1 H5 H5 H5 H5 H5 H5

Figure 6 Division of ETC in different regions

Region 2
Region 3

Region 1

Munir et al

78

Conclusions
Optimal assignment of tasks to machines in a HC
environment has been proven to be a NP-complete
problem. It requires the use of efficient heuristics to
find near optimal solutions. In this paper, we have
proposed, analyzed and implemented seven new
heuristics. A comparison of the proposed heuristics
with the existing heuristics was also performed in
order to identify the circumstances in which one
heuristic outperforms the others. The experimental
results demonstrate that in most of the circumstances
one of the proposed heuristics H2 or H5 outperforms
all the existing heuristics. Based on these
experimental results, we are also able to suggest,
given an ETC, which heuristic should be used to
achieve the minimum makespan.
Acknowledgements
The authors are thankful to COMSATS Institute of
Information Technology for providing the support for
this research. A preliminary version of portions of
this document appear in the proceedings of the
Modelling, Computation and Optimization in
Information Systems and Management Sciences
(MCO’08).

References
Ali S, TD Braun, HJ Siegel, M Maciejewski, AA

Beck, N Boloni, L Maheswaran, M Reuther,
AI Robertson, JP Theys and MD Yao, 2005.
Characterizing source allocation heuristics
for heterogeneous computing systems. In:
A.R. Hurson (Ed.), Advances in Computers,
vol. 63: Parallel, Distributed, and Pervasive
Computing, Elsevier, Amsterdam, The
Netherlands, pp: 91-128.

Ali S, HJ Siegel, M Maheswaran, S Ali, and D
Hensgen, 2000. Task Execution Time
Modeling for Heterogeneous Computing
Systems, Proceedings of the 9th
Heterogeneous Computing Workshop,
pp:185–199.

Barbulescu L, LD Whitley and AE Howe, 2004.
Leap Before You Look: An Effective
Strategy in an Oversubscribed Scheduling
Problem. Proceedings of the 19th National
Conference on Artificial Intelligence,
ppL:143–148.

Baca, DF., (1989). Allocating modules to processors
in a distributed system, IEEE Transactions
on Software Engineering 15(11):1427–1436.

Braun TD, HJ Siegel, N Beck, LL Bölöni, M
Maheswaran, AL Reuther, JP Robertson,
MD Theys, B Yao, D Hensgen and RF
Freund, 2001. A comparison of eleven
static heuristics for mapping a class of
independent tasks onto heterogeneous

distributed computing systems. Journal of
Parallel and Distributed Computing
61(6):810 – 837.

Briceno LD, M Oltikar, HJ Siegel and AA
Maciejewski, 2007. Study of an Iterative
Technique to Minimize Completion Times
of Non-Makespan Machines. Proceedings of
the 17th Heterogeneous Computing
Workshop pp: 1-14

El-Rewini H, TG Lewis and HH Ali, 1994. Task
Scheduling in Parallel and Distributed
Systems, PTR Prentice Hall, New Jersey,
USA.

Foster I, and C Kesselman, 1998. The Grid: Blueprint
for a New Computing Infrastructure,
Morgan Kaufman Publishers, San Francisco,
CA, USA.

Freund RF, M Gherrity, S Ambrosius, M Campbell,
M Halderman, D Hensgen, E Keith, T Kidd,
M Kussow, JD Lima, M Mirabile, L Moore,
B Rust, and HJ Siegel, 1998. Scheduling
Resources in Multi-User, Heterogeneous,
Computing Environments with Smartnet,
Proceedings of the 7th Heterogeneous
Computing Workshop pp.184-199.

Ritchie G and J Levine, 2004. A hybrid ant algorithm
for scheduling independent jobs in
heterogeneous computing environments.
Proceedings of the 23rd Workshop of the
UK Planning and Scheduling Special
Interest Group.

Ritchie G and J Levine, 2003. A fast, effective local
search for scheduling independent jobs in
heterogeneous computing environments,
Proceedings of the 22nd Workshop of the
UK Planning and Scheduling Special
Interest Group, pp.178-183.

Ibarra OH and CE Kim, 1977. Heuristic algorithms
for scheduling independent tasks on non-
identical processors. Journal of association
of computing machinery 24 (2):280–289.

Kim JK, S Shivle, HJ Siegel, AA Maciejewski, TD
Braun, M Schneider, S Tideman, R Chitta,
RB Dilmaghani, R Joshi, A Kaul, A
Sharma, S Sripada, P Vangari and SS
Yellampalli, 2007. Dynamically mapping
tasks with priorities and multiple deadlines
in a heterogeneous environment. Journal of
Parallel and Distributed Computing,
67(2):154-169.

Kwok Y and K I Ahmad, 1999. Static scheduling
algorithms for allocating directed task
graphs to multiprocessors, association of
computing machinery Computing Surveys,
31(4):406–471.

Performance of scheduling heuristics

79

Kwok YK, AA Maciejewski, HJ Siegel, I Ahmad
and A Ghafoor, 2006. A semi-static
approach to mapping dynamic iterative tasks
onto heterogeneous computing system.
Journal of Parallel and Distributed
Computing 66(1):77-98.

Luo P, K Lu and ZZ Shi, 2007. A revisit of fast
greedy heuristics for mapping a class of
independent tasks onto heterogeneous
computing systems. Journal of Parallel and
Distributed Computing 67 (6): 695-714.

Maheswaran M, S Ali, HJ Siegel, D Hensgen, and
RF Freund, 1999. Dynamic mapping of a
class of independent tasks onto
heterogeneous computing system. Journal of
Parallel and Distributed Computing 59(2):
107–131.

Sakellariou R and H Zhao 2004. A Hybrid Heuristic
for Dag Scheduling on Heterogeneous
Systems, Proceedings of the 13th
Heterogeneous Computing Workshop
pp:111-123

Shestak V, EKP Chong, AA Maciejewski, HJ Siegel,
L Bemohamed, I Wang and R Daley 2005.
Resource Allocation for Periodic
Applications in a Shipboard Environment.
Proceedings of the 14th Heterogeneous
Computing Workshop. pp:124-130

Shivle S, HJ Siegel, AA Maciejewski, P Sugavanam,
T Banka, R Castain, K Chindam, S
Dussinger, P Pichumani, P Satyasekaran, W
Saylor, D Sendek, J Sousa, J Sridharan and
J.,Velazco 2006. Static allocation of
resources to communicating subtasks in a
heterogeneous ad hoc grid environment.
Journal of Parallel and Distributed
Computing, 66(4): 600–611.

Shivle S, P Sugavanam, HJ Siegel, AA Maciejewski,
T Banka, K Chindam, S Dussinger, A
Kutruff, P Penumarthy, P Pichumani, P
Satyasekaran, D Sendek, J Smith, J Sousa, J
Sridharan and J Velazco 2005. Mapping
subtasks with multiple versions on an adhoc
grid. Parallel Computing. Special Issue on
Heterogeneous Computing. 31(7):671– 690.

Wu MY, W Shu and H Zhnag 2000. Segmented
min-min: A Static Mapping Algorithm for
Meta-Tasks on Heterogeneous Computing
Systems. Proceedings of the 9th
Heterogeneous Computing Workshop,
pp.375–385.

Yarmolenko V, J Duato, DK Panda, and P
Sadayappan, 2000. Characterization and
Enhancement of Static Mapping
Heuristics for Heterogeneous Systems.
International Conference on Parallel
Processing, pp: 437-444.

Munir et al

Performance of scheduling heuristics

[image: image126.emf]

Pak. j. life soc. Sci. (2011), 9(1): 70-79

Comparative Study on Performance of Scheduling Heuristics in Hetero-geneous Computing Environment

Ehsan Ullah Munir*, Sheraz Anjum1, Muhammad Wasif Nisar, Waqas Anwar2 and Kashif Ayyub

Department of Computer Science, COMSATS Institute of Information Technology, Quaid Avenue, Wah Cantt, Pakistan;

1Department of Computer Engineering, COMSATS Institute of Information Technology, Wah Cantt, Pakistan;

2Department of Computer Science, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Abstract

Heterogeneous computing (HC) environment consists of different resources connected with high-speed links to provide a variety of computational capabilities for computing-intensive applications having multifarious computational requirements. The problem of optimal assignment of tasks to machines in HC environment is proven to be NP-complete requiring use of heuristics to find the near optimal solution. In this work we conduct a performance study of task scheduling heuristics in HC environment. In present study overall implemented 16 heuristics, among them 7 are proposed in this paper. The range bar for the average makespan of each heuristic shows a 95% confidence interval for the corresponding average makespan. From the values it is clear that for high values of

[image: image1.wmf]machine

V

 H16 is the best heuristic. And in

all other cases one of the preoposed heuristic H2 or H5 outperforms all other heuristics. Based on experimental results, specify the circumstances under which one heuristic will outperform the others.

Keywords: Heterogeneous computing, Task schedu- ling, Performance evaluation, Task Partitioning heuristic

Introduction

Heterogeneous computing (HC) environment consists of different resources connected with high-speed links to provide a variety of computational capabilities for computing - intensive applications

 having multifarious computational requirements (Ali et al., 2005). In HC environment an application is decomposed into various tasks and each task is assigned to one of the machines, which is best suited for its execution to minimize the total execution time. Therefore, an efficient assignment scheme responsible for allocating the application tasks to the machines is needed; formally this problem is named task scheduling (El-Rewini et al., 1994). Developing such strategies is an important area of research and it has gained a lot of interest from researchers (Barbulescu et al., 2004; Shestak et al., 2005; Shivle et al., 2006). The problem of task scheduling has gained tremendous attention and has been extensively studied in other areas such as computational grids (Foster and Kesselman, 1999) and parallel programs (Kwok and Ahmad, 1999).

The problem of an optimal assignment of tasks to machines is proven to be NP-complete requiring use of heuristics to find the near-optimal solution (Baca, 1989; Ibarra and Kim, 1977). Plethora of heuristics has been proposed for assignment of tasks to machines in HC environment (Maheswaran et al., 1999; Wu et al., 2000; Sakellariou and Zhao, 2004; Kwok et al., 2006; Kim et al., 2007). Each heuristic has different underlying assumptions to produce near optimal solution however no work reports which heuristic should be used for a given set of tasks to be executed on different machines.

Provided with a set of tasks

[image: image2.wmf]{

}

12

,,...,

m

ttt

, a set of machines

[image: image3.wmf]{

}

12

,,...,

n

mmm

 and expected time to compute (ETC) of each task

[image: image4.wmf]i

t

on each machine

[image: image5.wmf]j

m

,

[image: image6.wmf](

)

,

ij

ETCtm

 EMBED Equation.DSMT4 [image: image7.wmf](

)

1,1

imjn

££££

, in the current study we find out the task assignment strategy that gives the minimum makespan.

For task selection in heterogeneous environment different criteria can be used, e.g. minimum, maximum or average of expected execution time across all machines. In current work we propose a new heuristic based on task partitioning, which consider minimum (min), maximum (max), average (avg), median (med) and standard deviation (std) of expected execution time of task on different machines as selection criteria. We call each selection criterion a key. Each heuristic uses only one key. Scheduling process for the proposed heuristics works like this; all the tasks are sorted in decreasing order of their key, then these tasks are partitioned into k segments and after this scheduling is performed in each segment.

A large number of experiments were conducted on synthetic datasets; Coefficient of Variation (COV) based method was used for generating synthetic datasets, which provides greater control over spread of heterogeneity (Ali et al., 2000). A comparison among existing heuristics is conducted and new heuristics are proposed. Extensive simulation results illustrate the circumstances when one heuristic would outperform other heuristics in terms of average makespan.

 Let

[image: image8.wmf]{

}

12

,,...,

m

Tttt

=

 be a set of tasks,

[image: image9.wmf]{

}

12

,,...,

n

Mmmm

=

 be a set of machines, and the expected time to compute (ETC) is a

[image: image10.wmf]mn

´

matrix where the element

[image: image11.wmf]ij

ETC

 represents the expected execution time of task

[image: image12.wmf]i

t

 on machine

[image: image13.wmf]j

m

. For clarity, we denote

[image: image14.wmf]ij

ETC

 by

[image: image15.wmf](

)

,

ij

ETCtm

 in the rest of the paper. Machine availability time,

[image: image16.wmf](

)

j

MATm

, is the earliest time machine

[image: image17.wmf]j

m

can complete the execution of all the tasks that have previously been assigned to it (based on the ETC entries for those tasks). The completion time (CT) of task

[image: image18.wmf]i

t

 on machine

[image: image19.wmf]j

m

is equal to the execution time of

[image: image20.wmf]i

t

on

[image: image21.wmf]j

m

plus the machine availability time of

[image: image22.wmf]j

m

i.e.

[image: image23.wmf](

)

(

)

(

)

,,

ijijj

CTtmETCtmMATm

=+

.

Makespan (MS) is equal to the maximum value of the completion time of all tasks i.e.

[image: image24.wmf](

)

max

j

MSMATm

=

 for

[image: image25.wmf](

)

1

jn

££

Provided with T, M and ETC our objective is to find the task assignment strategy which minimizes makespan.

Materials and Methods

Task partitioning heuristic

In heterogeneous environment for task selection different criteria can be used, examples are minimum, maximum or average of expected execution time across all machines. In task partitioning heuristic we use minimum (min), maximum (max), average (avg), median (med) and standard deviation (std) of expected execution time of task on different machines as selection criteria; hereafter referred to as key. Given a set of tasks

[image: image26.wmf]{

}

12

,,...,

m

Tttt

=

, a set of machines

[image: image27.wmf]{

}

12

,,...,

n

Mmmm

=

, expected time to compute (ETC) matrix then the working of proposed heuristic can be explained as follows: we compute the sorting key for each task (for each heuristic only one key will be used for sorting), then we sort the tasks in decreasing order of their sorting key. Next the tasks are partitioned into k disjoint equal sized groups. In last, tasks are scheduled in each group

[image: image28.wmf]x

g

 using the following procedure:

Procedure 1

a) for each task

[image: image29.wmf]i

t

 in a group

[image: image30.wmf]x

g

 find machine

[image: image31.wmf]j

m

 which completes the task at earliest.

 b) If machine

[image: image32.wmf]j

m

is available i.e. no task is assigned to machine then assign task to machine and remove it from list of tasks.

 c) If there is already task

[image: image33.wmf]k

t

 assigned to machine i.e. machine

[image: image34.wmf]j

m

 is not available then compute the difference between the minimum earliest completion time and the second smallest earliest completion time on all machines for

[image: image35.wmf]i

t

 and

[image: image36.wmf]k

t

respectively.

1. If the difference value for

[image: image37.wmf]i

t

 is larger than that of

[image: image38.wmf]k

t

 then

[image: image39.wmf]i

t

 is assigned to machine

[image: image40.wmf]j

m

.

2. If the difference value for

[image: image41.wmf]i

t

 is less than that of

[image: image42.wmf]k

t

, then no changes to the assignment .

3. If the differences are equal, we compute the difference between the minimum earliest completion time and the third smallest earliest completion time for

[image: image43.wmf]i

t

and

[image: image44.wmf]k

t

respectively. And repeat 1-3. Every time if step 3 is selected, the difference between the minimum earliest completion time and the next earliest completion time (e.g. the fourth, the fifth…) for

[image: image45.wmf]i

t

and

[image: image46.wmf]k

t

 are computed respectively. If all the differences are the same then the task is selected deterministically i.e. the oldest task is chosen.

Now the proposed Task partitioning algorithm can be summed up in the following steps:

Task Partitioning Heuristic

1. Compute the sorting key for each task:

Sub-policy1 (avg): Compute the average value of each row in ETC matrix

[image: image47.wmf](

)

,/.

iij

j

keyETCtmn

=

å

Sub-policy2 (min): Compute the minimum value of each row in ETC matrix

[image: image48.wmf](

)

min,.

iij

j

keyETCtm

=

Sub-policy3 (max): Compute the maximum value of each row in ETC matrix

[image: image49.wmf](

)

max,.

iij

j

keyETCtm

=

Sub-policy4 (med): Compute the median value of each row in ETC matrix

[image: image50.wmf](

)

,.

iij

j

keymedETCtm

=

Sub-policy5 (std): Compute the standard deviation value of each row in ETC matrix

[image: image51.wmf](

)

,.

iij

j

keystdETCtm

=

2. Sort the tasks in decreasing order of their sorting key (for each heuristic only one key will be used for sorting).

3. Partition the tasks evenly into k segments.

4. Apply the procedure 1 for scheduling each segment.

Table 1 Scenario ETC matrix

		Task no

		m1

		m2

		m3

		m4

		t1

		17

		19

		31

		17

		t2

		2

		4

		2

		5

		t3

		18

		11

		12

		7

		t4

		3

		4

		6

		13

		t5

		4

		2

		2

		3

		t6

		10

		9

		11

		7

		t7

		13

		26

		28

		10

		t8

		9

		6

		4

		4

		t9

		10

		13

		8

		5

		t10

		5

		4

		7

		9

		t11

		7

		9

		6

		13

		t12

		14

		6

		12

		8

		t13

		14

		8

		12

		20

		t14

		16

		9

		16

		15

		t15

		18

		11

		5

		7

[image: image52.png]m4

™ o
S S

saulyoew

m1

25

20

time

Figure 1 Visual representation of task assignment in task partitioning heuristic

Table 2 Task partitioning

		Task no

		m1

		m2

		m3

		m4

		Avg

		t1

		17

		19

		31

		17

		21.00

		t7

		13

		26

		28

		10

		19.25

		t14

		16

		9

		16

		15

		14.00

		t13

		14

		8

		12

		20

		13.50

		t3

		18

		11

		12

		7

		12.00

		t15

		18

		11

		5

		7

		10.25

		t12

		14

		6

		12

		8

		10.00

		t6

		10

		9

		11

		7

		9.25

		t9

		10

		13

		8

		5

		9.00

		t11

		7

		9

		6

		13

		8.75

		t4

		3

		4

		6

		13

		6.50

		t10

		5

		4

		7

		9

		6.25

		t8

		9

		6

		4

		4

		5.75

		t2

		2

		4

		2

		5

		3.25

		t5

		4

		2

		2

		3

		2.75

A scenario of ETC is given in Table 1 to describe the working of proposed heuristic. All machines are assumed to be idle for this case. Sorting key used for the algorithm is average (avg) i.e. tasks are sorted in decreasing order of their average value. Table 2 shows the task partitioning; tasks are partitioned into three segments which implies k = 3. Table 3 shows how the results are derived using procedure 1. Figure 1 gives the visual representation of task assignment for proposed heuristic.

Heuristics notation

In task partitioning heuristic tasks are sorted based on average, minimum, maximum, median and standard deviation and each heuristic is named as TPAvg, TPMin, TPMax, TPMed and TPStd. The algorithms Segmented min-min (med) and Segmented min-min (std) are also implemented for the evaluation purpose. The naming conventions and source information for all existing and proposed heuristics are detailed in Table 4.

Table 3 Execution process of Procedure 1 on each group

		Execution process on group 1

		1st pass

		min. CT

		difference

		t1→ m1

		17

		0

		t14→ m2

		9

		6

		t3→ m4

		7

		4

		2nd pass

		min. CT

		difference

		t7→ m4

		17

		11

		t13→ m3

		12

		5

		execution process on group 2

		1st pass

		min. CT

		difference

		t15→ m3

		17

		3

		t12→ m2

		15

		9

		2nd pass

		min. CT

		difference

		t6→ m2

		24

		0

		t9→ m4

		22

		3

		t11→ m3

		23

		1

		execution process on group 3

		1st pass

		min. CT

		difference

		t4→ m1

		20

		8

		2nd pass

		min. CT

		difference

		t10→ m1

		25

		3

		t8→ m4

		26

		1

		3rd pass

		min. CT

		difference

		t2→ m3

		25

		2

		4th pass

		min. CT

		difference

		t5→ m2

		26

		1

Results and Discussion

Dataset

In the experiments, COV based ETC generation method is used to simulate different HC environments by changing the parameters

[image: image53.wmf]task

m

,

[image: image54.wmf]task

V

 and

[image: image55.wmf]machine

V

, which represent the mean task execution time, the task heterogeneity, and the machine heterogeneity, respectively. The COV based method provides greater control over the spread of the execution time values than the common range-based method used previously (Braun et al., 2001; Ritchie and Levine, 2003; Shivle et al., 2005).

The COV-based ETC generation method works as follows (Ali et al., 2000): First, a task vector, q, of expected execution times with the desired task heterogeneity is generated following gamma distribution with mean

[image: image56.wmf]task

m

and standard deviation

[image: image57.wmf]tasktask

V

m

*

. The input parameter

[image: image58.wmf]task

m

is used to set the average of the values in q. The input parameter

[image: image59.wmf]task

V

is the desired coefficient of variation of the values in q. The value of

[image: image60.wmf]task

V

 quantifies task heterogeneity, and is larger for high task heterogeneity. Each element of the task vector q is then used to produce one row of the ETC matrix following gamma distribution with mean

[image: image61.wmf][

]

qi

and standard deviation

[image: image62.wmf][

]

machine

qiV

*

such that the desired coefficient of variation of values in each row is

[image: image63.wmf]machine

V

, another input parameter. The value of

[image: image64.wmf]machine

V

quantifies machine heterogeneity, and is larger for high machine heterogeneity.

Comparative performance evaluation

The performance of the heuristic algorithm is evaluated by the average makespan of 1000 results on 1000 ETCs generated by the same parameters. In all the experiments, the size of ETCs is

[image: image65.wmf]51216

´

, the value of k = 3, the mean of task execution time

[image: image66.wmf]task

m

 is 1000, and the task COV

[image: image67.wmf]task

V

 is in

[image: image68.wmf][

]

0.1, 2

 while the machine COV

[image: image69.wmf]machine

V

 is in

[image: image70.wmf][

]

0.1, 1.1

.

The motivation behind choosing such heterogeneous ranges is that in real situation there is more variability across execution times for different tasks on a given machine than the execution time for a single task across different machines.

The range bar for the average makespan of each heuristic shows a 95% confidence interval for the

corresponding average makespan. This interval represents the likelihood that makespans of task assignment for that type of heuristic fall within the specified range. That is, if another ETC matrix (of the same type) is generated, and the specified heuristic generates a task assignment, then the makespan of the task assignment would be within the given interval with 95% certainty. In our experiments we have also considered two metrics in comparison of heuristics. Such metrics have also been considered by (Sakellariou and Zhao, 2004)

· The number of best solutions (denoted by NB) is the number of times a particular method was the only one that produced the shortest makespan.

· The number of best solutions equal with another method (denoted by NEB), which counts those cases where a particular method produced the shortest makespan but at least one other method also achieved the same makespan. NEB is the complement to NB.

The proposed heuristics are compared with 11 existing heuristics. Experiments are performed with different ranges of task and machine heterogeneity.

In the first experiment we have fixed the value of

[image: image71.wmf]task

V

= 2 and then increase the value of

[image: image72.wmf]machine

V

from 0.1 to 1.1 with increment of 0.2 in each step. The results of NB and NEB are shown in the Table 5. From the values it is clear that for high values of

[image: image73.wmf]machine

V

 H16 is the best heuristic. And in all other cases one of the proposed heuristic H2 or H5 outperforms all other heuristics. Figure 2 gives the comparison of average makespan of the all heuristics considered.

In the second experiment we have fixed the value of

[image: image74.wmf]task

V

= 1.1 and then increase the value of

[image: image75.wmf]machine

V

from 0.1 to 1.1 with increment of 0.2 in each step. The results of NB and NEB are shown in the Table 6. From the values it is clear that here in all the cases one of the proposed heuristic H2 or H5 is best. Figure 3 gives the comparison of average makespan of all the heuristics consider here.

Table 4 Summary of compared heuristics

		No

		Name

		Reference

		No

		Name

		Reference

		H1

		TPAvg

		New

		H9

		Smm-avg

		(Wu, M.Y et al)

		H2

		TPMin

		New

		H10

		Smm-min

		(Wu, M.Y et al)

		H3

		TPMax

		New

		H11

		Smm-max

		(Wu, M.Y et al)

		H4

		TPMed

		New

		H12

		Smm-med

		New

		H5

		TPStd

		New

		H13

		Smm-std

		New

		H6

		Min-min

		(Freund R.F et al)

		H14

		MCT

		(Maheswaran, M et al)

		H7

		Max-min

		(Freund R.F et al)

		H15

		minSD

		(Luo, P et al)

		H8

		Sufferage

		(Maheswaran, M et al)

		H16

		HTF

		(Yarmolenko, V et al)

Table 5 NB and NEB values table when fix

[image: image76.wmf]task

V

= 2

		Cov of tasks

		H1

		H2

		H3

		H4

		H5

		H6

		H7

		H8

		H9

		H10

		H11

		H12

		H13

		H14

		H15

		H16

		0.1

		NB

		86

		197

		169

		78

		245

		0

		0

		96

		0

		0

		0

		0

		0

		0

		0

		4

		

		NEB

		97

		27

		48

		92

		29

		0

		2

		18

		0

		0

		0

		0

		0

		0

		0

		2

		0.3

		NB

		101

		252

		112

		132

		90

		0

		0

		213

		0

		1

		0

		0

		0

		0

		0

		0

		

		NEB

		62

		54

		48

		62

		52

		0

		1

		49

		0

		0

		0

		0

		0

		0

		0

		4

		0.5

		NB

		101

		352

		98

		106

		65

		0

		0

		92

		0

		1

		1

		1

		1

		0

		0

		19

		

		NEB

		105

		84

		104

		103

		99

		0

		1

		90

		1

		0

		1

		1

		0

		0

		0

		10

		0.7

		NB

		82

		350

		62

		89

		47

		0

		0

		45

		1

		2

		4

		1

		2

		0

		0

		146

		

		NEB

		100

		59

		98

		96

		99

		0

		2

		89

		0

		0

		2

		1

		1

		0

		0

		32

		0.9

		NB

		60

		199

		43

		62

		44

		0

		0

		11

		5

		2

		2

		4

		0

		0

		0

		381

		

		NEB

		103

		78

		115

		103

		110

		0

		14

		94

		1

		0

		2

		0

		1

		2

		0

		90

		1.1

		NB

		17

		69

		22

		21

		16

		0

		0

		9

		0

		1

		0

		3

		1

		0

		0

		575

		

		NEB

		167

		156

		160

		163

		160

		0

		47

		156

		1

		0

		3

		1

		2

		5

		0

		202

[image: image77.png]Average Makespan

45000
40000
35000
30000
25000
20000
15000
10000

5000

1234567 8 910111213141516

Heuristics

[image: image78.png]Average makespan

35000

30000

25000

20000

15000

10000

5000

1234567 8 910111213141516

Heuristics

[image: image79.png]Average makespan

24000

20000

16000

12000

8000

4000

1234567 8 910111213141516

Heuristics

(a)

(b)

(c)

[image: image80.png]Average makespan

12500

10000

7500

5000

2500

1234567 8 910111213141516

Heuristics

[image: image81.png]Average makespan

7500

6000

4500

3000

1500

1234567 8 910111213141516

Heuristics

[image: image82.png]Average makespan

5000

4000

3000

2000

1000

1234567 8 910111213141516

Heuristics

 (d)

 (e)

 (f)

Figure 2 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3, (c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

Table 6 NB and NEB values table when fix

[image: image83.wmf]task

V

 = 1.1

		Cov of tasks

		H1

		H2

		H3

		H4

		H5

		H6

		H7

		H8

		H9

		H10

		H11

		H12

		H13

		H14

		H15

		H16

		0.1

		NB

		141

		159

		150

		150

		372

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		24

		2

		5

		21

		6

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.3

		NB

		139

		284

		199

		161

		211

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		2

		4

		2

		3

		1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.5

		NB

		129

		445

		154

		127

		142

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		1

		2

		2

		0

		1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.7

		NB

		84

		613

		97

		82

		102

		0

		0

		0

		3

		10

		1

		2

		0

		0

		0

		0

		

		NEB

		3

		2

		4

		3

		1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.9

		NB

		78

		586

		80

		63

		91

		0

		0

		0

		8

		59

		5

		14

		1

		0

		0

		2

		

		NEB

		6

		8

		6

		7

		4

		0

		0

		1

		0

		2

		0

		0

		0

		0

		0

		1

		1.1

		NB

		66

		505

		76

		73

		63

		0

		0

		1

		28

		24

		4

		24

		4

		0

		0

		92

		

		NEB

		20

		24

		17

		16

		14

		0

		0

		10

		3

		0

		1

		1

		1

		0

		0

		11

[image: image84.png]Average Makespan

40000
35000
30000
25000
20000
15000
10000

5000

1234567 8 910111213141516

Heuristics

[image: image85.png]Average makespan

30000

25000 |

20000 f

15000 |

10000 |

5000 f

1234567 8 910111213141516

Heuristics

[image: image86.png]Average makespan

20000

16000

12000

8000

4000

1234567 8 910111213141516

Heuristics

 (a)

 (b)

 (c)

[image: image87.png]Average makespan

12500

10000

7500

5000

2500

1234567 8 910111213141516

Heuristics

[image: image88.png]Average makespan

7500

6000 |

4500 |

3000 f

1500 }

1234567 8 910111213141516

Heuristics

[image: image89.png]Average makespan

4000

3200

2400

1600

800

1234567 8 910111213141516

Heuristics

(d)

(e)

(f)

Figure 3 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3, (c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

Table 7 NB and NEB values when fix

[image: image90.wmf]task

V

= 0.6

		Cov of tasks

		H1

		H2

		H3

		H4

		H5

		H6

		H7

		H8

		H9

		H10

		H11

		H12

		H13

		H14

		H15

		H16

		0.1

		NB

		81

		80

		78

		79

		682

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.3

		NB

		73

		42

		143

		76

		663

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		1

		1

		3

		0

		1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.5

		NB

		84

		20

		254

		118

		520

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		3

		0

		2

		0

		3

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.7

		NB

		127

		13

		285

		130

		441

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		2

		0

		3

		1

		2

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.9

		NB

		150

		33

		313

		144

		354

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		2

		0

		2

		4

		4

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		1.1

		NB

		138

		124

		245

		158

		313

		0

		0

		0

		0

		6

		0

		0

		0

		0

		0

		1

		

		NEB

		4

		9

		5

		8

		5

		0

		0

		0

		0

		1

		0

		0

		0

		0

		0

		0

In the third experiment we have fixed the value of

[image: image91.wmf]task

V

= 0.6 and then increase the value of

[image: image92.wmf]machine

V

from 0.1 to 1.1 with increment of 0.2 in each step. The results of NB and NEB are shown in the Table 7. From the values it is clear that here in all the cases proposed heuristic H5 outperforms all other heuristics. Figure 4 gives the comparison of average makespan of all the heuristics.

In the fourth experiment we have fixed the value of

[image: image93.wmf]task

V

= 0.1 and then increase the value of

[image: image94.wmf]machine

V

from 0.1 to 1.1 with increment of 0.2 in each step. The results of NB and NEB are shown in the Table 8. From the values it is clear that here in all the cases proposed heuristic H5 outperforms all other heuristics. Figure 5 gives the comparison of the average makespan of all the heuristics.

Algorithm to find best heuristic

Based on the values of

[image: image95.wmf]task

V

 and

[image: image96.wmf]machine

V

 we divide ETC into three different regions. If the values of

[image: image97.wmf]task

V

 and

[image: image98.wmf]machine

V

are high (here

[image: image99.wmf]task

V

= 2 and 0.9 <=

[image: image100.wmf]machine

V

<= 1.1) then ETC falls in the region 1, if either of them is medium (here

[image: image101.wmf]task

V

= 1.1 or 0.3 <=

[image: image102.wmf]machine

V

< =0.7) then it falls in region 2 and if either of them is low (here 0.1 <=

[image: image103.wmf]task

V

<= 0.6 or 0.1 <=

[image: image104.wmf]machine

V

 <= 0.2) then it falls in region 3. Fig. 6 shows the three regions and best heuristic for each region.

The procedure for finding a best heuristic is given below in Algorithm Best Heuristic, which suggests the best heuristic depending on ETC type.

[image: image105.png]Average makespan

35000

30000

25000

20000

15000

10000

5000

1234567 8 910111213141516

Heuristics

[image: image106.png]Average makespan

30000

25000 |

20000 f

15000 |

10000 |

5000 f

1234567 8 910111213141516

Heuristics

[image: image107.png]Average makespan

20000

16000

12000

8000

4000

1234567 8 910111213141516

Heuristics

(a)

(b)

(c)

[image: image108.png]Average makespan

12500 |

10000 |

7500 |

5000 f

2500 |

1234567 8 910111213141516

Heuristics

[image: image109.png]Average makespan

7500

6000

4500

3000

1500

1234567 8 910111213141516

Heuristics

[image: image110.png]Average makespan

4000

3200

2400

1600

800

1234567 8 910111213141516

Heuristics

(d)

(e)

(f)

Figure 4 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3, (c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

Table 8 NB and NEB values when fix

[image: image111.wmf]task

V

= 0.1

		Cov of tasks

		H1

		H2

		H3

		H4

		H5

		H6

		H7

		H8

		H9

		H10

		H11

		H12

		H13

		H14

		H15

		H16

		0.1

		NB

		0

		0

		0

		0

		1000

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.3

		NB

		0

		0

		0

		0

		1000

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.5

		NB

		0

		0

		14

		0

		986

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.7

		NB

		0

		0

		84

		5

		910

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0.9

		NB

		8

		0

		215

		10

		763

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		1.1

		NB

		41

		0

		311

		28

		619

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		NEB

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Best heuristic

Input: expected time to compute matrix (ETC)

Output: best heuristic

Compute the

[image: image112.wmf]task

V

 and

[image: image113.wmf]machine

V

if

[image: image114.wmf]task

V

is high and

[image: image115.wmf]machine

V

is high then

ETC belongs to region1

if

[image: image116.wmf]task

V

is medium or

[image: image117.wmf]machine

V

is medium then

ETC belongs to region2

if

[image: image118.wmf]task

V

is low or

[image: image119.wmf]machine

V

is low then

ETC belongs to region3

end if switch(region)

case region1: return H16

case region2: return H2

case region3: return H5

end switch

[image: image120.png]Average makespan

35000

30000

25000

20000

15000

10000

5000

1234567 8 910111213141516

Heuristics

[image: image121.png]Average makespan

35000

30000

25000

20000

15000

10000

5000

1234567 8 910111213141516

Heuristics

[image: image122.png]Average makespan

25000

20000

15000

10000

5000

1234567 8 910111213141516

Heuristics

(a)

(b)

(c)

[image: image123.png]Average makespan

15000

12500 |

10000 |

7500 |

5000 f

2500 |

1234567 8 910111213141516

Heuristics

[image: image124.png]Average makespan

7500

6000

4500

3000

1500

1234567 8 910111213141516

Heuristics

[image: image125.png]Average makespan

4000

3200

2400

1600

800

1234567 8 910111213141516

Heuristics

(d)

(e)

(f)

Figure 5 Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) Vmachine= 0.1, (b) Vmachine = 0.3, (c) Vmachine = 0.5, (d) Vmachine = 0.7, (e) Vmachine = 0.9, (f) Vmachine = 1.1.

		Cov of Tasks

		COV of Machines

		

		

		0.1

		0.3

		0.5

		0.7

		0.9

		1.1

		

		2

		H5

		H2

		H2

		H2

		H16

		H16

		

		1.1

		H5

		H2

		H2

		H2

		H2

		H2

		

		0.6

		H5

		H5

		H5

		H5

		H5

		H5

		

		0.1

		H5

		H5

		H5

		H5

		H5

		H5

Figure 6 Division of ETC in different regions

Conclusions

Optimal assignment of tasks to machines in a HC environment has been proven to be a NP-complete problem. It requires the use of efficient heuristics to find near optimal solutions. In this paper, we have proposed, analyzed and implemented seven new heuristics. A comparison of the proposed heuristics with the existing heuristics was also performed in order to identify the circumstances in which one heuristic outperforms the others. The experimental results demonstrate that in most of the circumstances one of the proposed heuristics H2 or H5 outperforms all the existing heuristics. Based on these experimental results, we are also able to suggest, given an ETC, which heuristic should be used to achieve the minimum makespan.

Acknowledgements

The authors are thankful to COMSATS Institute of Information Technology for providing the support for this research. A preliminary version of portions of this document appear in the proceedings of the Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO’08).

References

Ali S, TD Braun, HJ Siegel, M Maciejewski, AA Beck, N Boloni, L Maheswaran, M Reuther, AI Robertson, JP Theys and MD Yao, 2005. Characterizing source allocation heuristics for heterogeneous computing systems. In: A.R. Hurson (Ed.), Advances in Computers, vol. 63: Parallel, Distributed, and Pervasive Computing, Elsevier, Amsterdam, The Netherlands, pp: 91-128.

Ali S, HJ Siegel, M Maheswaran, S Ali, and D Hensgen, 2000. Task Execution Time Modeling for Heterogeneous Computing Systems, Proceedings of the 9th Heterogeneous Computing Workshop, pp:185–199.

Barbulescu L, LD Whitley and AE Howe, 2004. Leap Before You Look: An Effective Strategy in an Oversubscribed Scheduling Problem. Proceedings of the 19th National Conference on Artificial Intelligence, ppL:143–148.

Baca, DF., (1989). Allocating modules to processors in a distributed system, IEEE Transactions on Software Engineering 15(11):1427–1436.

Braun TD, HJ Siegel, N Beck, LL Bölöni, M Maheswaran, AL Reuther, JP Robertson, MD Theys, B Yao, D Hensgen and RF Freund, 2001. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing 61(6):810 – 837.

Briceno LD, M Oltikar, HJ Siegel and AA Maciejewski, 2007. Study of an Iterative Technique to Minimize Completion Times of Non-Makespan Machines. Proceedings of the 17th Heterogeneous Computing Workshop pp: 1-14

El-Rewini H, TG Lewis and HH Ali, 1994. Task Scheduling in Parallel and Distributed Systems, PTR Prentice Hall, New Jersey, USA.

Foster I, and C Kesselman, 1998. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufman Publishers, San Francisco, CA, USA.

Freund RF, M Gherrity, S Ambrosius, M Campbell, M Halderman, D Hensgen, E Keith, T Kidd, M Kussow, JD Lima, M Mirabile, L Moore, B Rust, and HJ Siegel, 1998. Scheduling Resources in Multi-User, Heterogeneous, Computing Environments with Smartnet, Proceedings of the 7th Heterogeneous Computing Workshop pp.184-199.

Ritchie G and J Levine, 2004. A hybrid ant algorithm for scheduling independent jobs in heterogeneous computing environments. Proceedings of the 23rd Workshop of the UK Planning and Scheduling Special Interest Group.

Ritchie G and J Levine, 2003. A fast, effective local search for scheduling independent jobs in heterogeneous computing environments, Proceedings of the 22nd Workshop of the UK Planning and Scheduling Special Interest Group, pp.178-183.

Ibarra OH and CE Kim, 1977. Heuristic algorithms for scheduling independent tasks on non-identical processors. Journal of association of computing machinery 24 (2):280–289.

Kim JK, S Shivle, HJ Siegel, AA Maciejewski, TD Braun, M Schneider, S Tideman, R Chitta, RB Dilmaghani, R Joshi, A Kaul, A Sharma, S Sripada, P Vangari and SS Yellampalli, 2007. Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous environment. Journal of Parallel and Distributed Computing, 67(2):154-169.

Kwok Y and K I Ahmad, 1999. Static scheduling algorithms for allocating directed task graphs to multiprocessors, association of computing machinery Computing Surveys, 31(4):406–471.

Kwok YK, AA Maciejewski, HJ Siegel, I Ahmad and A Ghafoor, 2006. A semi-static approach to mapping dynamic iterative tasks onto heterogeneous computing system. Journal of Parallel and Distributed Computing 66(1):77-98.

Luo P, K Lu and ZZ Shi, 2007. A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems. Journal of Parallel and Distributed Computing 67 (6): 695-714.

Maheswaran M, S Ali, HJ Siegel, D Hensgen, and RF Freund, 1999. Dynamic mapping of a class of independent tasks onto heterogeneous computing system. Journal of Parallel and Distributed Computing 59(2): 107–131.

Sakellariou R and H Zhao 2004. A Hybrid Heuristic for Dag Scheduling on Heterogeneous Systems, Proceedings of the 13th Heterogeneous Computing Workshop pp:111-123

Shestak V, EKP Chong, AA Maciejewski, HJ Siegel, L Bemohamed, I Wang and R Daley 2005. Resource Allocation for Periodic Applications in a Shipboard Environment. Proceedings of the 14th Heterogeneous Computing Workshop. pp:124-130

Shivle S, HJ Siegel, AA Maciejewski, P Sugavanam, T Banka, R Castain, K Chindam, S Dussinger, P Pichumani, P Satyasekaran, W Saylor, D Sendek, J Sousa, J Sridharan and J.,Velazco 2006. Static allocation of resources to communicating subtasks in a heterogeneous ad hoc grid environment. Journal of Parallel and Distributed Computing, 66(4): 600–611.

Shivle S, P Sugavanam, HJ Siegel, AA Maciejewski, T Banka, K Chindam, S Dussinger, A Kutruff, P Penumarthy, P Pichumani, P Satyasekaran, D Sendek, J Smith, J Sousa, J Sridharan and J Velazco 2005. Mapping subtasks with multiple versions on an adhoc grid. Parallel Computing. Special Issue on Heterogeneous Computing. 31(7):671– 690.

Wu MY, W Shu and H Zhnag 2000. Segmented min-min: A Static Mapping Algorithm for Meta-Tasks on Heterogeneous Computing Systems. Proceedings of the 9th Heterogeneous Computing Workshop, pp.375–385.

Yarmolenko V, J Duato, DK Panda, and P Sadayappan, 2000. Characterization and Enhancement of Static Mapping

Heuristics for Heterogeneous Systems. International Conference on Parallel Processing, pp: 437-444.

Pakistan Journal of

Life and Social Sciences

�*Corresponding Author: Ehsan Ullah Munir,

Department of Computer Science,

COMSATS Institute of Information Technology,

Wah Cantt , Pakistan

Email: ehsanmunir @comsats.edu.pk

Region 1

Region 3

Region 2

70

74

75

_1272725952.unknown

_1272725986.unknown

_1272726020.unknown

_1272726040.unknown

_1272726070.unknown

_1272726079.unknown

_1272726087.unknown

_1272726092.unknown

_1272726096.unknown

_1369729382.unknown

_1272726094.unknown

_1272726089.unknown

_1272726083.unknown

_1272726085.unknown

_1272726081.unknown

_1272726074.unknown

_1272726077.unknown

_1272726072.unknown

_1272726062.unknown

_1272726066.unknown

_1272726068.unknown

_1272726064.unknown

_1272726054.unknown

_1272726057.unknown

_1272726059.unknown

_1272726044.unknown

_1272726049.unknown

_1272726051.unknown

_1272726047.unknown

_1272726042.unknown

_1272726029.unknown

_1272726033.unknown

_1272726035.unknown

_1272726037.unknown

_1272726031.unknown

_1272726024.unknown

_1272726026.unknown

_1272726022.unknown

_1272726003.unknown

_1272726012.unknown

_1272726016.unknown

_1272726018.unknown

_1272726014.unknown

_1272726007.unknown

_1272726009.unknown

_1272726005.unknown

_1272725995.unknown

_1272725999.unknown

_1272726001.unknown

_1272725997.unknown

_1272725990.unknown

_1272725993.unknown

_1272725988.unknown

_1272725969.unknown

_1272725977.unknown

_1272725981.unknown

_1272725984.unknown

_1272725979.unknown

_1272725973.unknown

_1272725975.unknown

_1272725971.unknown

_1272725960.unknown

_1272725965.unknown

_1272725967.unknown

_1272725962.unknown

_1272725956.unknown

_1272725958.unknown

_1272725954.unknown

_1272725918.unknown

_1272725935.unknown

_1272725943.unknown

_1272725948.unknown

_1272725950.unknown

_1272725945.unknown

_1272725939.unknown

_1272725941.unknown

_1272725937.unknown

_1272725926.unknown

_1272725931.unknown

_1272725933.unknown

_1272725929.unknown

_1272725922.unknown

_1272725924.unknown

_1272725920.unknown

_1272725901.unknown

_1272725909.unknown

_1272725914.unknown

_1272725916.unknown

_1272725912.unknown

_1272725905.unknown

_1272725907.unknown

_1272725903.unknown

_1272725892.unknown

_1272725897.unknown

_1272725899.unknown

_1272725895.unknown

_1272725888.unknown

_1272725890.unknown

_1272725886.unknown

