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The construction sector has seen an outstanding transition in recent years, 
owing to advances in digital technology. One such innovation that has 
received a lot of attention is the idea of the digital twin (DT), which is a 
virtual component of a physical asset or process that is constantly updated 
with real-time data. DT technology allows construction professionals to 
monitor, simulate, and optimize project performance, cost, time, and 
quality using data from sensors, Building Information Modeling (BIM), and 
IoT devices. The purpose of the research is to develop dynamic monitoring 
and analysis methods for construction project performance that have 
highlighted the potential of integrating DT technology. This research 
proposes a deep learning algorithm, Intelligent Social Spider mutated 
Flexible Long Short Term Memory (ISS-FLSTM), to predict the 
construction performance. Varieties of sensors are placed across 
construction sites to record crucial performance data in real-time. The raw 
data gathered from sensors is preprocessed, including normalization, 
addressing missing data, and noise filtering. The system uses insights to 
predict risks, optimize resource allocation, and support informed 
decision-making, using DEM to validate the DT's high-accuracy simulation 
of real-world conditions. The findings show the proposed method 
significantly improves the system's capability to predict the construction 
performance compared to traditional approaches, which is evaluated in 
terms of recall (97.3%), precision (96.2%), accuracy (95.4%), RMSE 
(50.416), R^2 (0.995), and MAE (39.231). This research demonstrates that 
deep learning and DTs can be employed to provide a reliable and data-
driven approach to improving the effectiveness, sustainability, and 
performance of building projects.  

INTRODUCTION   

Construction activities are diverse and complex tasks composed of various tasks, which require 
organizing and planning of activities in order to accomplish specific objectives like time, cost, quality 
etc. Performance monitoring is the assessment of a given number of factors, which affects the 
progress of the project in particular area, like time, resource, cost, etc. [1]. Performance monitoring 
significantly improves results and reduces threats since construction projects often encounter 
difficulties such as delays, cost increases, and safety concerns [2]. 

http://www.pjlss.edu.pk/
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DT is one of such recent popular concepts that has received a lot of attention in recent time [3]. DT 
technology, initially utilized in manufacturing and aerospace industries, is implemented here in 
construction to model a system or physical property for its entire life cycle. This forms the DT that 
enables the emulation and thus the monitoring and optimization of several processes in real-time for 
performance improvement, decision-making and predictive analytics [4]. 

A DT is therefore a dynamic representation of a construction project in as much as the design and 
materials, operations and surrounding environment may be concerned. DT can offer timely and 
accurate information on the performance of construction project and potential threats that may 
emerge by taking data from sensors, BIM, GIS, and IoT gadgets [5]. 

DT systems significantly improve construction project supervision, management, and performance 
by tracking and forecasting real-time data. They provide information on project progression, 
resource consumption, cost management, and can model scenarios for unexpected delays. This helps 
project managers select effective plans and detect potential risks on construction sites [6]. 

DT systems may also enhance resource management by offering data about employees, supplies and 
material. Such a level of comprehension assists in preventing wastage whilst ensuring that available 
resources are used well to save costs and meet project schedules [7]. DT contributes to integrated 
decision-making across the construction project life cycle and gives an understanding of project 
development from preconstruction through construction and post construction [8]. 

Another advantage includes the ability of the DT technology to support cooperation. A DT is a very 
dynamic data-driven system for sharing information between engineers, contractors, architects, 
project managers, and other stakeholders. This also decreases the chances of misunderstandings and 
mistakes since everyone works towards the same objectives [9]. Additionally, by employing DT 
technology in construction projects, a better sustainable approach is enhanced. Construction projects 
may reduce their environmental effects through the application of DTs to improve material 
consumption, waste management, and energy usage [10]. 

An innovative DL approach called ISS-FLSTM was suggested to forecast building performance using 
the DT technology.  

Contributions  

 The building performance data was gathered from the Kaggle source. 

 The data is pre-processed using Z-score normalization and Kalman filtering techniques. 

 The features are extracted from the data using the Independent Component Analysis (ICA) 
approach. 

 A novel DL-based strategy known as ISS-FLSTM was introduced with the integration of DT 
technology to predict building performance.  

The remaining sections are organized as follows: Section 2 - Related Works, Section 3 - Methodology, 
Section 4 - Results and Discussion, and Section 5 - Conclusion. 

RELATED WORKS 

By providing insight into how a DT system interacts with BIM from a construction-related 
management perspective, research [11] intended to address the research gap in DT systems and a 
wide range of applications during construction. It demonstrated the entire potential of DTs during 
the project lifecycle's construction stage. The research offered several benefits of the DT for 
construction project administration, along with verified operations. It suggested that construction 
firms employ the 10 DT services that have been established to solve the low productivity and 
effectiveness that the sector continues to experience. 
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Using a more effective Mask R-CNN model with a deployment method on the Streamlit network for 
indoor construction advancement tracking, research [12] used DL and computer vision for automatic 
visual recognition and work-in-progress computation of as-built building parts. The digitalization of 
construction project administration was greatly advanced by their research, which developed a 
model specifically designed for automatically evaluating ongoing projects of interior building parts 
and described how to implement the system on a cloud-based platform.  

A novel methodological structure for the 3D reconstruction of DDT designs at building sites was 
presented in research [13], which makes it possible to monitor the construction area from every 
possible perspective inside a 3D model environment. Their approach demonstrated an outstanding 
95% reconstruction accuracy, highlighting its substantial potential to improve the effectiveness of 
building a DDT structure. 

An innovative vision-based structure for storm preparedness on construction sites was suggested in 
research [14]. The suggested methodologies were predicted to assist practitioners in swiftly 
recognizing, localizing, and assessing possible wind-borne derbies in construction areas, allowing for 
the efficient and timely implementation of storm preparedness strategies. 

Using an exploratory approach, research [15] investigated the possible combination of DL-integrated 
DT to promote Construction 4.0. The results demonstrated that the DL-integrated DT framework 
could enable Construction 4.0 by integrating cognitive skills to identify intricate and unexpected 
behaviors and reasoning on constantly changing optimization techniques to assist in making choices. 

Through examining real-time innovative construction and carbon emissions tracking, research [16] 
offered a comprehensive perspective on DT uses in the PSC. The results of the scientometric 
examination indicated research on fields including energy and emissions control, AI-powered choice-
making, and integrating blockchain with DT for prefabrication had great demand. 

The possible incorporation of DT systems throughout several construction phases, from basic design 
to project delivery, was evaluated in research [17]. Results showed that DT could function as the basis 
of a data-driven lifecycle that obtained ever more data and knowledge and eventually enabled well-
informed decision-making. 

A powerful and innovative instrument for tracking the development of a building project was 
presented by research [18]. It was built on the idea of a DT and used an Unreal Engine-created video 
game-like application. The outcome was an interactive application that resembled a video game and 
comprised a timeline tool that enabled users to travel through the construction phases captured in 
the as-built designs and contrast them with the as-designed models. 

A comprehensive analysis of the research on the key elements in charge of creating DT technological 
uses in the construction sector was provided in the research [19]. Their research demonstrated the 
increasing importance of DTs in construction and established the foundation for future 
developments in the area to fully realize its potential for changing built environment procedures. 

To identify lessons acquired from the use of DTs in construction and manufacturing, research [20] 
examined both of the areas. The results showed that, while the use of DTs in manufacturing was 
superior to construction, it has yet to achieve its full potential.  

A comprehensive process structure for CV-CPM was developed by repeatedly classifying the many 
concepts, devices, technologies, and strategies, as presented by the research [21]. The framework's 
four stages were identified and shown to have a significant impact on each other.  

An innovative 2D building construction performance tracking system for PPVC known as WAVBCPM 
was presented in research [22]. The outcomes indicated that WAVBCPM successfully tackled 
practical issues. 
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A multi-tasking computer vision technique for improved construction safety tracking was presented 
in research [23]. The findings showed that the combined dataset could be used in real construction 
areas more successfully. 

A technique for automatic progress tracking and reporting in construction tasks was presented in 
research [24] that combined data from a DL model with the UWB network. The results 
demonstrated the need for more research on enhancing integrated approaches for effective progress 
monitoring. 

A sophisticated technique for identifying construction activities was provided in research [25] 
utilizing the newly developed semi-supervised Ladder network and CNN. The findings showed that 
a Ladder-CNN trained with 10% labeled data could produce greater accuracy compared to a 
supervised CNN. 

Building Information Modelling (BIM), and artificial intelligence, were unique approaches that were 
used in the research [26] to create a model that employed neural networks to detect damage in 
bridge architecture. The outcomes demonstrated the increased precision attained when using the 
enhanced neural network technique to identify damage in bridge structures. 

METHODOLOGY 

The building performance data was collected from the Kaggle source. The data is then pre-processed 
using the Kalman filter and Z-score normalization. ICA was employed for extracting the features of 
the data. An innovative ISS-FLSTM approach was introduced for predicting the performance of the 
construction project based on the DT technology displayed in Figure 1. 

 

Figure 1: Overall flow of ISS-FLSTM 

Data collection 

The building performance data was gathered from the Kaggle source Building Performance Dataset. 
It resembles several elements of construction project tracking over time and is designed for time 
series analysis and optimization research. It contains 50,000 records that reflect data acquired within 
one-minute intervals. The data set includes various factors relating to managing projects, climate 
conditions, resource utilization, safety, and performance indicators. 

Data preprocessing by using Z-score normalization 

Z-score normalization is the most widely used for the prediction of building performance, which 
transforms all input values into a single measure with a SD of one and an average of zero. For each 

https://www.kaggle.com/datasets/ziya07/construction-project-performance-dataset/data
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variable, the SD and mean are determined. The calculated SD and mean are used for normalizing each 
value of a variable 𝑊. The calculation for modification is provided in Equation (1). 

𝑧 =
(𝑤 − 𝑚𝑒𝑎𝑛 (𝑊))

𝑠𝑡𝑑
(𝑊) (1) 

Where 𝑚𝑒𝑎𝑛 (𝑊) represents the attribute's mean and 𝑠𝑡𝑑 (𝑊) represents its SD. 

Kalman filtering 

The Kalman filter method is a popular optimization data processing process employed in several 
approaches. By creating a mathematical framework to determine the current moment's state update 
values, the Kalman filter method integrates the data from the present moment with the state update 
values from the prior moment. 

The system's transformed equation of state is provided in Equation (2). 

𝑊𝑙+1 = Φ𝑙+1
𝑙

𝑊𝑙 + 𝑋𝑙 (2) 

Where the system noise at moment 𝑙 is represented by𝑋𝑙 , the state transfer matrix is represented 
byΦ(𝑙+1)/𝑙, and the state vectors at moment 𝑙 𝑎𝑛𝑑 𝑙 + 1 are represented by𝑊𝑙  𝑎𝑛𝑑 𝑊𝑙+1. 

The system's observational calculation is shown in Equation (3). 

𝑌𝑙+1 = 𝐺𝑙+1𝑊𝑙+1 + 𝑈𝑙+1 (3) 

Where, 𝑈𝑙+1 - System's measurement noise at that moment 𝑙 + 1;𝑌𝑙+1 – System’s measurements at 
moment 𝑙 + 1, and 𝐺𝑙+1 - System's observation matrix at that moment 𝑙 + 1.  

At 𝑙 moments 𝑊𝑙, the ideal estimate is indicated by 𝑊̂𝑙. The ideal anticipated value at 𝑙 moments 𝑊𝑙+1 
is shown by 𝑊̂(𝑙+1)/𝑙. The recursive procedure for the Kalman filter appears as follows, 

State forecast calculation, 

𝑊̂(𝑙+1) = Φ𝑙+1
𝑙

𝑊̂𝑙 (4) 

Covariance forecast calculation, 

𝑂𝑙+1 = Φ𝑙+1
𝑙

𝑂𝑙Φ𝑙+1
𝑙

𝑆 + 𝑅𝑙 (5) 

Filter gain calculation, 

𝐿𝑙+1 = 𝑂𝑙+1
𝑙

𝐺𝑙+1
𝑆 (𝐺𝑙+1𝑂𝑙+1

𝑙
𝐺𝑙+1

𝑆 + 𝑄𝑙+1)

−1

(6) 

State assessing calculation, 

𝑊̂(𝑙+1) = 𝑊̂𝑙+1
𝑙

+ 𝐿𝑙+1 (𝑌𝑙+1 − 𝐺𝑙+1𝑊̂𝑙+1
𝑙

) (7) 

Filtered covariance update calculation, 

𝑂𝑙+1 = (𝐽 − 𝐿𝑙+1𝐺𝑙+1)𝑂𝑙+1
𝑙

(8) 

The covariance matrix of the prediction error estimates at moment 𝑙 for moment 𝑙 + 1 is represented 
by the formula 𝑂(𝑙+1)/𝑙. 

To estimate the system's total state information, a Kalman model is constructed and the system is 
iterated using the building performance. 
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Feature extraction by using ICA 

To identify hidden components from a set of observations or observable data, ICA is a relatively 
recent statistical and computational approach that ensures the sources are as independent as 
possible. 

The initial and individually independent source 𝑡(𝑠) = 𝑡1(𝑠), 𝑡2(𝑠), … . , 𝑡𝑚(𝑠) at time point 𝑠 is 
linearly combined with the observed variables 𝑤(𝑠) = 𝑤1(𝑠), 𝑤2(𝑠), … . , 𝑤𝑚(𝑠) on the computational 
level such that it may be stated as: 

𝑤(𝑠) = 𝐵𝑡(𝑠) (9) 

Where 𝐵 represents a full-rank mixing matrix. Equation (9) is frequently expressed as follows in ICA 
standards: 

𝑧 = 𝑋𝑤 (10) 

Where the IC is indicated by𝑧 = 𝑧1, 𝑧2, … , 𝑧𝑚, and the demixing matrix is𝑋 = 𝐵−1. Several ICA 
techniques could be employed to calculate the ICs and demixing matrix simply from the mixed 
observations. 

The retrieved components are independent and non-gaussian according to the ICA assessment 
standards. Non-gaussian may be measured using kurtosis (𝛽1). Kurtosis values for the Gaussian ICs 
are equal to 0, sub-Gaussian 𝛽1 ≤ 0, and super-Gaussian 𝛽1 ≥ 0. Kurtosis's standard measure is 
described in Equation (11). 

𝛽1 =
𝐸(𝑤 − 𝜇)4

(𝐸(𝑤 − 𝜇)2)2
− 3 =

𝜇4

𝜎4
− 3 (11) 

The standard kurtosis methods are also susceptible to outliers because they are mostly dependent 
on sample averages. Furthermore, the fact that outliers are increased to the third and fourth powers 
in the traditional metrics of kurtosis significantly increases their influence. By using an accurate 
measure of kurtosis in ICA, it intends to solve the presented issue. Moors suggested a quantile 
kurtosis substitute for 𝛽1. The degree of moors kurtosis is shown in Equation (12). 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
(𝐹7 − 𝐹5) + (𝐹3 − 𝐹1)

(𝐹6 − 𝐹2)
(12) 

𝐹𝑗 is the 𝑗𝑡ℎ octile, therefore 𝐹𝑗 = 𝐸−1 (
𝑗

8
). The value of Moor's quantile kurtosis for Gaussian ICs is 

equal to 1.23. 

ISS-FLSTM 

The use of an innovative ISS-FLSTM approach enhances the possibility of tracking the performance 
of construction projects related to DT technologies. This model integrates the intelligent behavior 
and flexibility of improved social spider (ISS) optimization and the FLSTM network, which is a DL 
architecture known for its temporal pattern learning ability. 

In construction project management, performance data is often complex and dynamic, requiring 
proper forecasting and identifying anomaly detection methodologies. Using the evolution technique 
suggested by social spider networks, the ISS-FLSTM performs exceptionally well, enabling the model 
to adapt to changing conditions in a project and make accurate predictions on performance 
indicators such as cost overruns, schedule delay, and resource allocation issues. 

Continuous project performance monitoring is further enabled by ISS-FLSTM, which incorporates DT 
technology, creating a real-time DT of physical assets and processes. The integration enhances 
decision-making by enabling the project managers to simulate the various scenarios, optimize 
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resources, and eliminate risks efficiently. This ensures that the model is capable of responding to 
several diverse data, which is highly significant given the unpredictability of many construction 
projects. Algorithm 1 shows the pseudocode for ISS-FLSTM. 

Algorithm 1: ISS-FLSTM 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤 𝑎𝑠 𝑡𝑓 

𝑓𝑟𝑜𝑚 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤. 𝑘𝑒𝑟𝑎𝑠. 𝑚𝑜𝑑𝑒𝑙𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 

𝑓𝑟𝑜𝑚 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝐿𝑆𝑇𝑀, 𝐷𝑒𝑛𝑠𝑒 

𝑓𝑟𝑜𝑚 𝑠𝑝𝑖𝑑𝑒𝑟_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑝𝑖𝑑𝑒𝑟𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 

𝑑𝑒𝑓 𝑙𝑜𝑎𝑑_𝑎𝑛𝑑_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑑𝑎𝑡𝑎(): 

    𝑑𝑎𝑡𝑎 =  𝑙𝑜𝑎𝑑_𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑑𝑎𝑡𝑎()     

    𝑑𝑎𝑡𝑎_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒_𝑑𝑎𝑡𝑎(𝑑𝑎𝑡𝑎) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑎𝑡𝑎_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 

𝑑𝑒𝑓 𝑏𝑢𝑖𝑙𝑑_𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒_𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒): 

    𝑚𝑜𝑑𝑒𝑙 =  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙() 

    𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝐿𝑆𝑇𝑀(64, 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒, 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒))   

    𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝐿𝑆𝑇𝑀(64))   

    𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑙𝑖𝑛𝑒𝑎𝑟′))   

    𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 𝑙𝑜𝑠𝑠 = ′𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟′) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 

𝑑𝑒𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑙𝑠𝑡𝑚_𝑤𝑖𝑡ℎ_𝑠𝑝𝑖𝑑𝑒𝑟(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎): 

    𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 =  𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑝𝑖𝑑𝑒𝑟𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟()   

    𝑚𝑢𝑡𝑎𝑡𝑒𝑑_𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎)   

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑢𝑡𝑎𝑡𝑒𝑑_𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑟𝑎𝑚𝑠 

𝑑𝑒𝑓 𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎): 

        𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛 =  𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎(𝑑𝑎𝑡𝑎)   

    𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑒𝑝𝑜𝑐ℎ𝑠 = 50, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32) 

𝑑𝑒𝑓 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎): 

    𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡 =  𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎(𝑑𝑎𝑡𝑎)   

    𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 

    𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑦_𝑡𝑒𝑠𝑡)   

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 

𝑑𝑒𝑓 𝑚𝑎𝑖𝑛(): 

    𝑑𝑎𝑡𝑎 =  𝑙𝑜𝑎𝑑_𝑎𝑛𝑑_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑑𝑎𝑡𝑎() 

    𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 =  (𝑑𝑎𝑡𝑎. 𝑠ℎ𝑎𝑝𝑒[1], 1)   
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    𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 =  𝑏𝑢𝑖𝑙𝑑_𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒_𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒) 

    𝑚𝑢𝑡𝑎𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑙𝑠𝑡𝑚_𝑤𝑖𝑡ℎ_𝑠𝑝𝑖𝑑𝑒𝑟(𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎) 

    𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙. 𝑠𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑚𝑢𝑡𝑎𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠)   

    𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙(𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎) 

    𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎) 

    𝑝𝑟𝑖𝑛𝑡("𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠: ", 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

𝑖𝑓 __𝑛𝑎𝑚𝑒__  ==  "__𝑚𝑎𝑖𝑛__": 

    𝑚𝑎𝑖𝑛() 

Flexible LSTM 

An FLSTM model leverages the DT design to predict construction performance based on data 
analysis, pattern identification, and forecasting outcomes. It helps provide an effective approach to 
management in building tasks, enhances effectiveness, and improves decision-making. 

LSTM 

RNN has an issue with learning information over a long period with a diminishing gradient, which 
means that previous learning outcomes disappear if the time gap is extended. To address these 
issues, LSTM is suggested. LSTM cell states are calculated as follows in Equations (13- 18): 

𝑗𝑠 = 𝜎(𝑋𝑗 × [𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑗) (13) 

𝑒𝑠 = 𝜎(𝑋𝑒 × [𝑔𝑠−1, 𝑊𝑒] + 𝑎𝑒) (14) 

𝑃𝑠 = 𝜎(𝑋𝑝 × [𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑝) (15) 

𝐷̃𝑠 = 𝑡𝑎𝑛ℎ(𝑋𝑑 × [𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑑) (16) 

𝐷𝑠 = 𝑒𝑠 × 𝐷𝑠−1 + 𝑗𝑠 × 𝐷̃𝑠 (17) 

𝑔𝑠 = 𝑃𝑠 × tanh(𝐷𝑠) (18) 

The IG, FG, and OG are denoted by 𝑗𝑠, 𝑒𝑠, 𝑎𝑛𝑑 𝑃𝑠 in Equations (13 - 15). Equation (16) shows that 𝐷̃𝑠 is 
a novel cell state candidate value. The previous cell state 𝐷𝑠−1 is updated into the new cell state 𝐷𝑠 
employing Equation (17), and the LSTM cell serves as a state data accumulator. 

Where, 𝑎𝑑  - Bias of CCS; 𝑎𝑗 - Bias of IG; 𝑎𝑝 - Bias of OG; 𝑎𝑒 - Bias of FG; 𝑋𝑝 - Weights of the OG; 𝑋𝑗 - 

Weights of the IG, 𝑋𝑑  - Weights of the CCS, and 𝑋𝑒 - Weights of the FG. 

FLSTM 

The FLSTM used 𝐷𝑠−1 for the IG, FG, and OG. 𝐷𝑠−1 influences the IG, FG, and OG of the LSTM. 

The IG layer gets data from both the preceding CI and the HL. The data is then calculated to provide 
the following output as shown in Equation (19): 

{
𝑗𝑠 = 𝜎(𝑋𝑗 × [𝐷𝑠−1, 𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑗)

𝐷̃𝑠 = 𝑡𝑎𝑛ℎ(𝑋𝑑 × [𝐷𝑠−1, 𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑑)
(19) 

Equation (19) shows that 𝑗𝑠 is the IG's output, whereas 𝑊𝑠 𝑎𝑛𝑑 𝑔𝑠−1 represent the output and input 
of the preceding HL. The bias of the IG and 𝐷̃𝑠 is represented by 𝑎𝑗 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑑 . The activation function 

is denoted by 𝜎, and the subsequent soft function is utilized. 
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𝜎𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑤) =
𝑤

1 + |𝑤|
(20) 

The FG's output follows the same calculation algorithm as the IG, but with distinct weights 𝑋𝑒 and 
bias 𝑎𝑒, as indicated in Equation (21). 

𝑒𝑠 = 𝜎(𝑋𝑒 × [𝐷𝑠−1, 𝑔𝑠−1, 𝑋𝑒] + 𝑎𝑒) (21) 

The process of updating from the prior cell state 𝐷𝑠−1 to the CCS 𝐷𝑠 is indicated by Equation (22). 

𝐷𝑠 = 𝑒𝑠 × 𝐷𝑠−1 + 𝑗𝑠 × 𝐷̃𝑠 (22) 

The CI, memory, and output of the preceding HL determine the outcomes, as displayed in Equation 
(23). 

{
𝑃𝑠 = 𝜎(𝑋𝑝 × [𝐷𝑠, 𝑔𝑠−1, 𝑊𝑠] + 𝑎𝑝)

𝑔𝑠 = 𝑃𝑠 × tanh(𝐷𝑠)
(23) 

In Equation (23), 𝑃𝑠, 𝑔𝑠 𝑎𝑛𝑑 𝑎𝑝 represent the gate's outputs, the current HL, and the bias for 𝑃𝑠. 

ISS optimization 

The ISS algorithm integrates DT technology to enhance the forecasting of building performance. The 
ISS mimics the actions of social spiders to fine-tune parameters and make accurate predictions of the 
results of a construction project. When combined with data in real-time from DT, it improves the 
decision-making process, resource distribution, and project management in complex construction 
conditions. A novel swarm method called SSO performs optimization by simulating the actions of 
social spiders. Numerous applications employ SSO, in which the location of spiders through the 
spider web, which is the process of converting information between spiders, is the solution to the 
optimization issue. The spiders use vibrations that are sent as they travel to a new location to 
communicate with one another. Spider 𝑗 and spider 𝑖 vibrate because of spider𝑖's weight and location. 

𝑉𝑖𝑏𝑗𝑖 = 𝑥𝑖𝑓−𝑐𝑗𝑖
2

, 𝑐𝑗𝑖 = ‖𝑤𝑗 − 𝑤𝑖‖ (24) 

Where the weight spider 𝑖, denoted by 𝑥𝑖, is described in Equations (25 & 26). 

𝑥𝑖 =
𝐸(𝑥𝑖) − 𝑤𝑜𝑟𝑠𝑡𝑤

𝑏𝑒𝑠𝑡𝑤 − 𝑤𝑜𝑟𝑠𝑡𝑤

(25) 

𝑏𝑒𝑠𝑡𝑤 =
𝑚𝑎𝑥

𝑙 = 1, … , 𝑀𝐸(𝑤𝑙), 𝑤𝑜𝑟𝑠𝑡𝑤 =
𝑚𝑖𝑛

𝑙 = 1, … , 𝑀
𝐸(𝑤𝑙) (26) 

Where, 𝐸(𝑤𝑖) - Value of the FF derived from the evaluation of 𝑤𝑖.  

Spiders may be classified into two genders, males and females, and their positions can be updated 
using the two methods. The female spider uses the following method to modify its location. 

𝑤𝐸𝑗

𝑙+1 = {
𝑤𝐸𝑗

𝑙 + 𝛼 × 𝑉𝑖𝑏𝑑𝑗 × (𝑤𝑑 − 𝑤𝐸𝑗

𝑙 ) + 𝛽 × 𝑉𝑖𝑏𝑎𝑗 × (𝑤𝑎 − 𝑤𝐸𝑗

𝑙 ) + 𝛿 × (𝜉 − .5),     𝑟𝑎𝑛𝑑 ≥ 𝑜𝑛

𝑤𝐸𝑗

𝑙 − 𝛼 × 𝑉𝑖𝑏𝑑𝑗 × (𝑤𝑑 − 𝑤𝐸𝑗

𝑙 ) − 𝛽 × 𝑉𝑖𝑏𝑎𝑗 × (𝑤𝑎 − 𝑤𝐸𝑗

𝑙 ) + 𝛿 × (𝜉 − .5),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(27) 

Where, 𝑙 - Number of iterations; 𝑜𝑛 - Threshold that moves the spider in or out of the vibration source; 
and 𝛼, 𝛽, 𝛿, 𝑟𝑎𝑛𝑑 𝑎𝑛𝑑 𝜉 - Random values that range between 0 and 1.  

The spider with the highest weight that is closest to the position is represented by the individual 𝑤𝑑, 
and the ideal individual is 𝑤𝑎. The vibration that the ideal spiders transmit is denoted as 𝑉𝑖𝑏𝑎𝑗; 𝑥𝑎 =

𝑚𝑎𝑥𝑙=1,…,𝑀𝑥𝑙  𝑎𝑛𝑑 𝑉𝑖𝑏𝑎𝑗 = 𝑥𝑎𝑓−𝑐𝑗𝑎
2

 . Additionally, the vibration delivered by the closest spider with 
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the highest weight is known as the 𝑉𝑖𝑏𝑑𝑗; 𝑉𝑖𝑏𝑑𝑗 = 𝑥𝑑𝑓−𝑐𝑗𝑑
2

 𝑎𝑛𝑑 𝑥𝑑 > 𝑥𝑗 . Equation (27) employs the 

first calculation if the female focuses on moving in the direction of the vibration source. If they choose 
to travel away from the source, the subsequent calculation is employed. 

In contrast to the female approach, the males adjust their location according to whether they are 
dominated or not. Non-dominated spiders attract females by attempting to migrate into the center of 
male spiders to transform into strong males. The male modify their locations as follows in Equation 
(28): 

𝑤𝑛𝑗
𝑙+1 = {

𝑤𝑛𝑗
𝑙 + 𝛼 × 𝑉𝑖𝑏𝑒𝑗 × (𝑤𝑒 − 𝑤𝑛𝑗

𝑙 ) + 𝛿 × (𝜉 − .5),    𝑥𝑛𝑗
≥ 𝑖𝑛𝑑𝑚𝑒𝑑

𝑤𝑛𝑗
𝑙 + 𝛼 (𝜂 − 𝑤𝑛𝑗

𝑙 ) ,                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(28) 

Where, 𝜂 = ∑ 𝑤𝑛𝑗
𝑙+1𝑀𝑛

𝑖=1 . 𝑥𝑀𝑒+𝑖/ ∑ 𝑥𝑀𝑒+𝑖
𝑀𝑛
𝑖=1 ; 𝑖𝑛𝑑𝑚𝑒𝑑 - Average weight of all male spiders, and 𝑀𝑛 - 

Number of male spiders. 

Males who weigh more than the average are considered as dominating; otherwise, they are regarded 
as non-dominant. 𝑉𝑖𝑏𝑒𝑗 is the vibrations sent by the closest female, and it is described as follows: 

𝑉𝑖𝑏𝑒𝑗 = 𝑥𝑒𝑓−𝑐𝑗𝑒
2

. 𝑤𝑒 is the nearest female to 𝑗𝑡ℎ male. 

The last stage is mating, in which the dominant male and female lay on their neighbor with a pairing 
radius determined as follows in Equation (29): 

𝑞 =
∑ (𝑤𝑖

ℎ𝑖𝑔ℎ
− 𝑤𝑖

𝑙𝑜𝑤)𝑚
𝑖=1

2𝑚
(29) 

The parents are chosen using a roulette wheel method because this neighbor may have a single 
female and more than one male. Following the generation of the offspring, the FF for each is 
calculated and compared to the worst parents. 

To discover the best subset of attributes without affecting the classifier's effectiveness, an enhanced 
version of the SSO method known as ISS was introduced. It is based on the concepts of rough sets. 

The ISSO algorithm begins by randomly allocating each spider's location, from which the spider 
population is created. Subsequently, it uses Equations (30 & 31) to transform each spider's location 
into a BV of length 𝑀, which is the entire amount of attributes. 

𝐸𝑂 (𝑤𝑗
𝑖(𝑠)) =

1

1 + 𝑓−𝑤𝑗
𝑖(𝑠)

(30) 

𝑤𝑗
𝑖(𝑠 + 1) = {

1     𝑖𝑓 𝐸𝑂 (𝑤𝑗
𝑖(𝑠)) > 𝜖

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(31) 

Where the value of the spider at iteration 𝑠 is 𝜖 ∈ [0,1] 𝑎𝑛𝑑 𝑤𝑖(𝑠). The chosen attributes for every 
spider 𝑤𝑗 are the ones that match 1s, whereas the unselected features match 0 s. 

The efficiency of solutions in the suggested approach is assessed using the dependence degree 𝛾𝑄(𝐶). 

However, the quantity of chosen attributes is not taken into account. As a result, it employed the 
identical FF that specified in Equation (32). 

𝐸(𝑄) = 𝜌𝛾𝑄(𝐶) + (1 − 𝜌) (1 −
|𝑄|

|𝐷|
) (32) 

Where | ∙ | is the feature set's length. The parameter 𝜌 balances the number of chosen attributes and 
the quality of categorization (𝜌 ∈ [0,1]). The FF for every spider is calculated and contrasted with the 
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global fitness𝐸𝑏𝑒𝑠𝑡 . 𝐸𝑗  is utilized in place of 𝐸𝑏𝑒𝑠𝑡 , and its location 𝑤𝑗 becomes the reduct set 𝑄, if the 

FF's present value is higher. Following that, each spider's location is modified based on its type. This 
procedure is carried out repeatedly until the stopping criterion is reached. 

RESULT  

The ISS-FLSTM method was used in Python 3.10 to perform the necessary operations on a Windows 
11 laptop equipped with an Intel i5 9th Gen and 16 GB of RAM. The ISS-FLSTM approach is evaluated 
with traditional approaches such as Multi-view convolutional neural network (MVCNN) [27], particle 
swarm optimized artificial neural network (PSO-ANN) [28], and Artificial neural network (ANN) [29]. 

DT is a digital representation of a building or other infrastructures constructed to predict its 
behavior. Real-time data from sensors and models enables construction process monitoring, 
modeling and optimization of the construction process. This improves decisions and productivity 
where it helps to forecast such as cost, schedule, and quality. Figure 2 displays the construction 
project prediction based on DT. 

 

Figure 2: Construction project prediction based on DT 

Construction project performance 

The task is being completed about the plan and it has a 72% progress rate for the set tasks. It indicates 
the fact with nearly an absolute humidity of 93.8% and therefore can have an impact on the 
conditions of the location. The resources were used efficiently with a high utilization rate of 92.1%. 
The risk of the project can be estimated to be moderate because the risk rate was 61.8%. A safer 
environment has to be provided at the workplace and this has been indicated by the safety incident 
rate of 26.2%. The metrics of construction project performance are displayed in Figure 3. 

 

Figure 3: Output of construction project performance 
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Confusion matrix 

A confusion matrix provides a measure of the accuracy of the classification of a given model with the 
help of actual and expected values, which depict true positive, false positive, true negative, and false 
negative. The matrix is divided into four subcategories, which include underperforming, satisfactory, 
proficient, and exceptional. It shows in each column the construction project’s proportion of actual 
states predicted for each category. For example, 40.4% of actual underperforming instances were 
overestimated to be satisfactory, but 32.2% of actual underperforming cases were correctly classified 
as underperforming. Figure 4 displays the output of the confusion matrix. 

 

Figure 4: Output of confusion matrix 

Precision 

Precision is defined as the comparison of predictions of a model with the actual performance when 
using DT technology to estimate construction performance. It determines the proportion of the 
accurately forecasted results out of all the successful forecasts. The proposed ISS-FLSTM strategy has 
a precision value of 96.2%, while the conventional PSO-ANN and MVCNN approaches have precision 
values of 90.2% and 89.2%, as displayed in Figure 5.  

 

Figure 5: Result of precision 
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Accuracy 

The accuracy for DT-based construction performance prediction considers the correspondence of 
model predictions to actual construction data, considering cost, time, quality, and resource 
consumption. Compared to the traditional techniques, the proposed ISS-FLSTM strategy has an 
accuracy value of 95.4%; however, the traditional PSO-ANN and MVCNN approaches have low 
accuracy values of 90.9% and 88.9%, as shown in Figure 6. 

 

Figure 6: Outcome of accuracy 

Recall 

The recall measures the capability of a model together with the DT technology to predict the results 
for construction by correctly identifying positive instances. It evaluated the proportion of true 
positive instances that were classified to ensure the model minimizes false negatives, which are 
important in precise construction performance and decision-making. The recommended ISS-FLSTM 
strategy has a recall value of 97.3% when compared to the conventional PSO-ANN and MVCNN 
approaches, which have low recall values of 91.2% and 85.2%, as shown in Figure 7. Table 1 displays 
the result of precision, accuracy, and recall. 

 

Figure 7: Outcome of recall 
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Table 1: Result of precision, accuracy, and recall 
Methods Precision (%) Accuracy (%) Recall (%) 

MVCNN [27] 89.2% 88.9% 85.2% 

PSO-ANN [28] 90.2% 90.9% 91.2% 

ISS-FLSTM 
[Proposed] 

96.2% 95.4% 97.3% 

MAE 

The MAE evaluates the average absolute deviation of projected values of construction performance 
from the actual values to determine how accurate the DT technology is at forecasting. It presents a 
simple error metric; better prediction performance implies lower MAE, which enhances the flow of 
decisions in optimization and construction management processes. In comparison, the suggested ISS-
FLSTM strategy has an MAE value of 39.231, whereas the traditional PSO-ANN and ANN approaches 
have high MAE values of 41.120 and 48.347, respectively, as displayed in Figure 8. 

 

Figure 8: Result of MAE 

R-squared (𝑹𝟐) 

𝑅2 is used to evaluate the quality of fit in predictive models, including the construction performance 
forecast applying DT technology. 𝑅2, which indicates a higher value means that the DT model 
enhances the decision-making process in construction, and provides an understanding of the various 
factors that affect the results. In comparison, the suggested ISS-FLSTM technique has an 𝑅2 value of 
0.995, while the conventional PSO-ANN and ANN approaches have low 𝑅2 values of 0.966 and 0.988, 
as displayed in Figure 9. 

 

Figure 9: Outcome of 𝑹𝟐 



Liu et al.                                                                                                                         Research on Dynamic Monitoring and Analysis Methods 

21230 

RMSE 

The RMSE evaluates the DT technology’s prediction models of construction performance. It gives 
details of the model performance through the calculation of the square root of the average square 
differences between ideal and actual values, indicating the magnitude of the prediction errors. When 
compared to the traditional methods, the suggested ISS-FLSTM approach has a low RMSE value of 
50.416, whereas the conventional PSO-ANN and ANN strategies have RMSE values of 64.16 and 
72.527, respectively, as shown in Figure 10. Table 2 displays the results of MAE, 𝑅2, and RMSE. 

 

Figure 10: Outcome of RMSE 

Table 2: Result of MAE, 𝑹𝟐, and RMSE 
Methods MAE 𝑹𝟐 RMSE 

PSO-ANN [28] 41.120 0.966 64.16 

ANN [29] 48.347 0.988 72.527 

ISS-FLSTM [Proposed] 39.231 0.995 50.416 

Discussion 

The construction project is in a transitional phase due to DT technology, it offers a significant 
instrument to predict and improve the efficiency in various phases of the projects.  MVCNN [27] has 
limitations when used in predicting building performance using DT. MVCNN has multi-view 
configurations, and this causes the design to be less suitable for real-time performance prediction 
due to the high processing power required. It has problems in identifying sequential or temporal 
data, which is crucial in construction processes. However, the scalability and flexibility of MVCNN are 
constrained because it often requires large labeled datasets with high efficiency for training, and 
obtaining such data in the construction industry may be expensive or time-consuming. 

The PSO-ANN [28] would have less robust performance for noisy or missing data, which are often 
encountered in real-world DT applications. Even though PSO enhances ANN by finding correct 
weights, it could face issues with early convergence to a solution of low quality, if applied to high 
dimensional, complicated problems like predicting building performance. Other limitations include 
the dependency on hyperparameters adjustment and the problem of overfitting to small datasets. 

ANNs [29] have a major drawback of overfitting, especially while using DT technology for building 
performance prediction where data could be sparse or unbalanced. The limitation is that it is often 
challenging to understand how forecasts are made, which can be critical for the decisions made in 
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the construction of buildings. Additionally, ANNs are incapable of maintaining temporal or 
geographical relations, which are the main characteristics of DT data. They are less useful in practical 
real-time applications because of the substantial concentration on feature engineering, which 
prolongs the development process and makes it more complicated. To overcome these challenges, a 
novel ISS-FLSTM was introduced to forecast the performance of the construction based on the DT 
technology. 

CONCLUSION  

The use of DT technology has caused a major transformation in the construction industry in recent 
years. The building performance data was obtained from the Kaggle source. To predict building 
performance, a novel DL approach called ISS-FLSTM was introduced based on DT technology. The 
suggested method is evaluated in terms of recall (97.3%), precision (96.2%), accuracy (95.4%), 
RMSE (50.416), 𝑅2 (0.995), and MAE (39.231). Several challenges are associated with using DT 
technology to forecast construction performance, including data accuracy issues, high costs, 
integration issues, and real-time issues dependent on reliable sensor networks. Future 
enhancements include reduced costs, real-time analytics, and further incorporation of AI, integration 
with IoT, and complex predictive maintenance to enhance the efficiency of construction activities. 
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APPENDIX 
Mask R-
CNN 

Mask Recurrent Convolutional 
Neural Network  

CV-CPM Computer-Vision-Based Construction 
Progress Monitoring  

IG Input gate  SSO Social spider optimization  
2D Two-dimensional  IC Independent component 
HL Hidden layer  OG Output gate  
DDT Dynamic digital twin  BV Binary vector 
  UWB Ultra-wideband  
PPVC Prefabricated prefinished 

volumetric construction  
  

SD Standard deviation  CI Current input  
FG Forget gate  3D Three-dimensional  
PSC Prefabrication supply chain  WAVBCPM Window-based automated visual 

building construction progress 
monitoring  

FF Fitness function  CCS Current cell state  
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