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The purpose of this research was to assess the quality of training offered 
to lecturers at Sudanese private universities. The study's central issue was 
the difficulty many universities, particularly private ones, have in offering 
enough professional development opportunities for their teaching staff. 
An analytical-descriptive methodology was used for the research. College 
professors made up the bulk of the study's sample group. A large-scale 
survey was used as a sampling strategy since the research population was 
quite small. The researchers devised a questionnaire to serve as a means 
of data collection. A total of 166 questionnaires were analyzed, and 113 
(or 68%) were deemed suitable for inclusion in the research. SPSS was 
used to do some statistical analyses on the data for the purpose of testing 
the hypothesis. The purpose of this study is to test the following 
hypotheses: Professional development plans for teachers are planned and 
prepared in advance. Faculty members may further their careers in a wide 
variety of topics and specializations. Faculty members face challenges that 
prevent them from participating in professional development 
opportunities. The study's final results are as follows. Plans and materials 
for faculty professional development are prepared well in advance. Faculty 
members face challenges that prevent them from participating in 
professional development opportunities. Here are some suggestions from 
the research: Companies should pick the most qualified instructors to lead 
their training programs. 

 

INTRODUCTION   

Collagen, a right-handed helix glycoprotein with three left-handed α-chains, forms 28 distinct types 
before 1971. Now, there are at least 32 genetically diverse polypeptide α-chains. Collagens are 
unified by the glycine-X-Y (Gly-X-Y)n repeat, an amino acid sequence responsible for thermal 
stability, represented by proline (X) and hydroxyproline (Y) (Gu et al., 2019). Collagens are classified 
into fibrillar and non-fibrillar collagens based on supramolecular organization. Fibrillar collagens, 
comprising ninety percent of collagen, come in various forms and are elongated, rod-like, or banded. 
Non-fibrillar collagens, such as transmembrane, anchoring fibrils, network-forming, and beaded 
filament-forming, form supramolecular structures like fibril-associated collagens (Fidle et al., 2018). 
Collagen, a key component of the extracellular matrix (ECM), forms the base-membrane and 
interstitial matrix, providing mechanical support and stability for tissue and organs (Frantz et al., 
2010; McKee et al., 2019; Xu et al., 2019). Non-fibrillar collagen regulates ECM meshwork anchoring 
and organization, maintaining tissue structure and supporting cells, tissues, and organs with specific 
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functional needs. The extracellular matrix's mechanical properties influenced by its structural needs 
and protein content, significantly affect cell motility, proliferation, differentiation, and apoptosis, 
necessitating tissue composition understanding (Alberts, 2015). The tumor microenvironment 
(TME) is a complex mix of stromal cells, including inflammatory cells, pericytes, endothelial cells, 
cancer-associated fibroblasts, and extracellular matrix proteins. Tumor growth is influenced by these 
cells, and their role in the TME is still under investigation. Lymphocyte infiltration and collagen 
formation also play a role (Galon et al., 2012; Drachneris et al., 2023; Watterson and Coelho, 2023). 
Solid tumors interact with stromal, immune, and extracellular matrix cells, creating a tumor 
microenvironment. Lymphocyte infiltration, particularly from CD8+ T cells, affects cancer forms. 
Tumor-associated macrophages and cancer cells affect collagen formation, causing structural 
alterations in the extracellular matrix (Qiu et al., 2019). Mutant genes, particularly tumor suppressor 
genes, significantly influence cancer cell behavior and extracellular matrix interactions, affecting 
collagen structure and composition. Mutant p53 and Janus kinase 2 (JaK2) signal transducers and 
activators of transcription 3 (STAT3) signaling affect tumor-associated collagen signature-3, leading 
to cancer proliferation and invasion. Arresten, an antiangiogenic component, is associated with p53 
activation (Kenny et al., 2017; Wörmann et al., 2016). Phosphate and tension homology deleted on 
chromosome ten (PTEN) gene deletions or silencing can slow cancer growth by increasing cancer-
associated fibroblast (CAF) recruitment and collagen production. Collagen interacts with tumor 
suppressor genes, facilitating cancer progression. Arresten, a collagen IV Alpha 1 chain fragment 
(Assadian et al., 2012; Al-Khouri et al., 2005; Dulińska-Litewka et al., 2022; Jolly et al., 2016; Gao et 
al., 2023; Wen et al., 2022), inhibits endothelial cell migration. Collagen interacts with proto-
oncogene mutations, promoting cancer progression. Mutant Kras and Snail (epithelial-mesenchymal 
transition (EMT)) promote collagen synthesis in pancreatic cancer cells, while suppressing Kras 
decreases collagen I deposition in renal fibrosis (Shields et al., 2013; Apte et al., 2013; Liang et al., 
2022; Wang et al., 2012). 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, consisting of 28 
members, are involved in matrix turnover and remodeling ECM components like elastin, gelatin, 
fibrillar collagens, and proteoglycans. They are regulated by hormones, growth factors, and cytokines 
and are involved in ovarian functions (Kapoor et al., 2016). MMPs play a crucial role in breast cancer, 
enhancing malignancy through TGF-β/SMAD signaling and proteolytic activation of MMP2 and 13. 
MMP14 is essential for malignant-promoters processes, enabling breast cancer Cytotoxic T 
lymphocytes (CTLs) to initiate tumors and activate motile programs under hypoxic conditions. MMPs 
also play a role in matrix remodeling (Kessenbrock et al., 2010; Cox, 2021; Dong et al., 2019). 

Discoidin domain receptors (DDRs) are human proteins that regulate the movement of neutrophil 
and fibroblasts in three-dimensional matrices. Human discoidin domain receptors (DDRs) belong to 
the receptor tyrosine kinase (RTK) family and bind to collagen, an extracellular matrix protein, via 
its extracellular area, transmembrane domain (Leitinger, 2014), cytosolic juxtamembrane domain 
(Chua et al., 2008), and C-terminal tyrosine kinase domain. They are primarily expressed in 
mesenchymal cells and are stimulated by collagen, an extracellular matrix protein. DDRs regulate 
MMP expression and activity, which can contribute to illness path physiology (Zhang et al., 2013; 
Valiathan et al., 2012; Corsa et al., 2016; Ren et al., 2014). 

Integrins, bidirectional signaling molecules, determine receptor affinity for extracellular matrix 
proteins. They exist in two structural states: stretched and bent (Humphries et al., 2006; Arruda 
Macêdo et al., 2015). ECM proteins are often fibrils or have multiple recognition sites. Integrin-ligand 
interaction initiates downstream adhesion signaling (Franceschi et al., 2015; Hamidi et al., 2016; 
Barrow-McGee et al., 2016). α1 and α2 integrin expression is abundant in dermal myofibroblasts. α10 
integrin is only found in cartilage and fibroblasts, making it difficult to target as a therapeutic target. 
Its expression in cancer is influenced by disease type and stage. Activation of transforming growth 
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factor-β (TGFβ) can suppress tumor growth, with elevated integrin expression causing worse 
prognosis and cancer progression. Integrins interact with growth factor receptors (GFRs) to support 
cancer cell survival and stemness, accelerating tumor growth in lung and breast cancer. Elevated 
αvβ3 integrin expression is linked to metastasis (Alanko et al., 2015; Mai et al., 2014). 

Elastic collagen (ECMs) is a type of tissue that self-assembles into monomers and cross-links with 
lysine residues, creating mature elastic fibers (Mecham, 2018; Theocharis et al., 2016). Lysyl oxidases 
(LOX) decrease diffusion via ECMs, and chemoresistant tumors have higher gene expression for ECM-
related proteins, indicating drug transport is hindered by a tumoral environment with high cross-
linking and fibrillar collagen mass (Rossow et al., 2018). 

This study aims to increase awareness about collagen's negative effects on cancer cell growth and 
development, using questionnaires to assess participants' knowledge and health knowledge to 
reduce cancer spread. 

METHODOLOGY 

A random survey of 400 participants from April 2021 to March 2024 aimed to assess public 
awareness of the harmful effects of collagen on various physiological systems like ECM, TME, MMPs, 
DDRs, integrins, and LOX. The survey for face-to-face interviews consisted of forty questions, with 
participant responses listed in Tables 1 and 2. 

Correlated variables: Researchers utilized survey data on participants' ages and educational levels to 
evaluate their understanding of the risks and mechanisms of collagen action within our bodies. 

Statistical analysis: The study used EXCEL software to analyze the link between increased cancer 
incidence and public misconceptions about collagen risks, dividing participants into "know" and 
"don't know" groups for statistical analysis.  

RESULT AND DISCUSSION  

The study emphasizes the significance of understanding collagen's impact on cells like integrin, LOX, 
TME, MMPs, and DDRs for public health, addressing ignorance about its harmful effects on cancer 
onset and spread (refer to Tables 1 to 2). 

Table1: Public perceptions of collagen's potential risks and their correlation with cancer occurrence. 

A survey was conducted to assess public perceptions of collagen's potential risks and their correlation 
with cancer occurrence. 

n=400 
NO. Questions Know 

(%) 
Don't know 

(%) 
1 Do you know the scientific definition of collagen? 45 

(11%) 
355 (89%) 

2 What varieties of collagen are there? 0 400 (100%) 
3 What benefits does collagen provide to the body? If know, could you 

please give more details? 
5 (1%) 395 (99%) 

4 Are you aware of the four main functions of collagen? If know, could 
you please give more details? 

0 400 (100%) 

5 What impact does higher collagen have, do you know? If so, could 
you please give more details? 

0 400 (100%) 

6 In cell proliferation, what part does collagen play? If so, could you 
please provide more details? 

0 400 (100%) 

7 How important is the extracellular matrix (ECM)? If you choose to 
answer “know," please explain. 

15 
(4%) 

385 (96%) 
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8 You know how much collagen is in the extracellular matrix? If so, 
kindly say so. 

0 400 (100%) 

9 Can you elaborate on the recognition of collagen as an essential 
constituent of the extracellular matrix (ECM)? 

0 400 (100%) 

10 In the extracellular matrix (ECM), how many different kinds of 
collagen are there? Could you please elaborate if you know more? 

0 400 (100%) 

11 Does collagen contribute to the growth of tumors? Could you please 
provide further details if you know? 

0 400 (100%) 

12 Does collagen support neoplasms? Could you please elaborate if you 
know? 

0 400 (100%) 

13 What is the extracellular matrix (ECM) of cancer cells? Please 
provide more details if you are aware? 

0 400 (100%) 

14 What is the impact of collagen on the tumor microenvironment 
(TME)?  Would you kindly elaborate if you know? 

0 400 (100%) 

15 Are you familiar with the components of the TME? If you are aware, 
kindly share it? 

0 400 (100%) 

16 Are you aware of the significance of the TME? Please let us know if 
you know. 

0 400 (100%) 

17 Are you aware of how collagen impacts the TME? Please let us know 
if you know. 

0 400 (100%) 

18 Are you aware of how matrix metalloproteinases (MMPs) 
contribute to the onset of cancer? Please inform us if you are aware. 

0 400 (100%) 

19 What effect do MMPs have on cancer? Please share if you are aware 
of it. 

0 400 (100%) 

20 Are you aware of the impact collagen has on cancer cells? If you are 
aware, kindly share it. 

0 400 (100%) 

21 Were you aware that collagen and cancer are related? If you know, 
kindly let us know. 

0 400 (100%) 

22 Do you know how cancer is affected by collagenase? Please share if 
you are aware of it. 

0 400 (100%) 

23 Are cancerous cells collagen-producing? Please let us know if you 
know. 

0 400 (100%) 

24 Does collagen crosslinking mediated by lysyl oxidase (LOX) lead to 
metastasis that is increased by fibrosis? if you are aware? Tell us, 
please. 

0 400 (100%) 

25 Do you know how important the discoidin domain receptors 
(DDRs) are? Please let us know if you know. 

0 400 (100%) 

26 Do you know anything about the DDRs pathway in cancer? If you 
are aware, kindly let us know. 

0 400 (100%) 

27 What do DDRs in oncology mean? Please let us know if you know. 0 400 (100%) 
28 Are you aware of DDRs' goals in relation to cancer? Please let us 

know if you know. 
0 400 (100%) 

29 What is the mechanism by which collagen, mesenchymal traits 
(EMT), and Kras interact to drive the development of cancer? Please 
let us know if you know. 

0 400 (100%) 

30 What connection exists between EMT and cancer? Could you pls let 
us know if you know? 

0 400 (100%) 

31 Do you know the connection between collagen III and cancer? Could 
you describe it if you know? 

0 400 (100%) 

32 Are you aware of the connections between tissue fibrosis, 
metastasis, and the growth of primary tumors and rapid matrix 
deposition and remodeling? Could you explain if you know? 

0 400 (100%) 
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33 Collagen I is an essential component of the stroma of adipose tissue 
tumors and fibrosis, and it serves as a substrate for LOX. Could you 
explain if you know? 

0 400 (100%) 

34 Has the Ministry of Health, the National Cancer Center, the 
Ministries of Education, Higher Education, and Scientific Research 
hosted any conferences or seminars on the dangers of collagen and 
its relationship to the proliferation of cancer cells? If you have, could 
you kindly let us know when it happened and why? 

0 400 (100%) 

35 Have you watched any informative television programs about the 
dangers of collagen and how they connect to cancer's early stages? 
Please let us know the location and time if you witnessed it. 

0 400 (100%) 

36 Have you already read any enlightening social media messages 
about the dangers of collagen and the rising rate of cancer? Please 
let us know where and when you read if you did. 

0 400 (100%) 

37 Are people being informed about the risks associated with collagen 
and its connection to the development of cancer by the Ministries of 
Education and Health? Could you please let us know where, when, 
and whether you received it? 

0 400 (100%) 

38 Do your loved ones or friends ever discuss the potential concerns 
associated with collagen? Please let us know the location and time 
of any discussions. 

0 400 (100%) 

39 Have you ever seen an academic study on the link between cancer 
risk factors and collagen? Tell us the whereabouts and when of any 
sightings, please. 

0 400 (100%) 

40 Did you think that the information you received from the survey 
would be helpful to you and encourage you to learn more about the 
hazards associated with collagen? 

400 
(100%) 

 
0 

Table2: Demographic Variables 
Ages (years) n=400 % 

<20 80 20 

20-50 154 38 

50-70 166 42 

Education level   

Without formal education  13 3 

Secondary school  89 22 

Bachelor’s degree (undergraduate)  110 28 

Higher education 188 47 

The extracellular matrix (ECM) is a crucial part of the tumor microenvironment, influencing the 
progression of invasive cancer and tissue loss (Madsen and Bugge, 2015; Kader et al., 2022; Madsen 
et al., 2017). Its rigidity and density, influenced by collagen type I density, can affect cancer prognoses 
and malignant transformation in cells like fibroblasts, mesenchymal stem cells, and epithelial cells 
(Cox and Erler, 2014; Naba et al., 2014; Cox et al., 2013; Pickup et al., 2014; Morkunas et al., 2021; Li 
et al.,2013; Puig et al., 2015; Leight et al., 2012). Tumors can deposit immunosuppressive proteins 
like osteopontin (OPN), the secreted protein acidic and rich in cysteine (SPARC), versican, and 
tenascin C (TN-C) (McMahon et al., 2016; Papadas et al., 2022; Jachetti et al., 2015; Sangaletti et al., 
2017) 

Nuclear factor kappa-light-chain enhancer of activated B-cells (NF-κB) is a cellular signaling pathway 
that plays a crucial role in various functions such as immunity, memory, learning, apoptosis, cell 
proliferation, and inflammation. NF-κB family comprises five subunits, with nuclear localization 
signal in RHD of p50/p65 dimers obscured by κB inhibitors, preventing nuclear translocation. Target 
gene expression is facilitated by IκBα phosphorylation by IKK complex, mediated by NIK. NF-κB, a 
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key player in various malignancies, affects tumor growth and therapeutic resistance through its anti-
inflammatory functions (Shen et al., 2014; Hoesel et al., 2013; Kaltschmidt et al., 2018; Riedlinger et 
al., 2018; Baud et al., 2016; Taniguchi and Karin, 2018; Lawrence and Fong, 2010; Yoshida et al., 
2013). Collagen expression is regulated by NF-κB and STATs, potentially causing cancer. Combining 
AZD1480 with gemcitabine improves collagen fiber direction in pancreatic cancer treatment by 
modifying collagen through TGF-β/Smad signaling. Collagen fibers convert pancreatic epithelium 
into fibrotic tissue, reversing cancer cell activities (Bray et al., 2018; Laklai et al., 2016) Collagen 
stiffness promotes melanoma differentiation, but TGF-β and Ras-Raf-MEK-ERK inhibits 
YAP/pax3/MITF production, leading to dedifferentiation. Melanoma cells increase collagen 
production, activating p38, resulting in protumorigenic extracellular matrix (Miskolczi et al., 2018; 
Jenkins et al., 2015; Clarke et al., 2016). Tyrosine kinase receptors, specifically FGFR4-R388, are key 
collagen-related receptors in various cancers, notably increasing MMP14 protein production and 
regulating COLI, COLII, and COLIV degradation (Chang et al., 2015). NF-κB targets epithelial-to-
mesenchymal transition (EMT) in cancer stem cells (CSCs), suppressing epithelial phenotype and 
increasing cancer invasiveness. This induces mesenchymal markers like Vimentin, MMP2 and MMP9. 
Human mammary epithelial cells can undergo EMT, producing stem cells with enhanced potential. 
High stiffness in cancer cells promotes EMT, invasion, and metastasis (Wei et al., 2015; Sipes et al., 
2011; Yamazaki et al., 2009; Meng et al., 2018). Rho-associated coiled-coil kinase (ROCK)/Rho 
signaling regulates cancer cell behavior, affecting migratory motility and cell proliferation. It also 
promotes COL1A1 gene promoter acetylation in breast cancer cells. PDAC suppression hinders 
collagen, fibroblast proliferation, and survival. MMP10 and MMP13 levels increase due to collagen 
matrix alteration by PDAC cells (Vennin et al., 2017; Rath et al., 2017). 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases with 28 members 
divided into subfamilies based on substrate specificity. These include collagenases (MMP1, MMP8, 
MMP13, and MMP18), matrilysins (MMP7 and MMP26), gelatinases (MMP2 and MMP9), 
stromelysins (MMP3, MMP10, and MMP11), and membrane-type MMPs (MT-MMPs) (Cui et al., 
2017). Glycosylphosphatidylinositol-associated membrane metalloproteinases (MMP17 and 
MMP25) are essential enzymes in membrane metalloproteinase production, along with secreted-
type matrix metalloproteinases like MMP12, MMP19, MMP20, MMP21, MMP22, MMP23, MMP27, and 
MMP28 (Jabłońska-Trypuć et al., 2016; Fallata et al., 2019). MMP family members share a standard 
structure with a flexible hinge region linking hemopexin to catalytic domain. MMP production is 
regulated by endogenous and tissue inhibitors, but overexpression in cancer lead to extracellular 
matrix breakdown (Verovenko et al., 2024; Newby, 2016). MMP1, 8, and 13 prefer collagen I, II, and 
III, while MMP3, 7, 10, and 11 break down extracellular matrix components. Interstitial collagenase 
MMP13 is crucial in cancer initiation and progression, overexpressed in cancers and CSCs (Peng et 
al., 2012; Xu et al., 2015). Discoidin domain receptor tyrosine kinases (DDRs) are involved in the 
binding of collagen to tumor cells, breaking various ECM components in cancers and CSCs. 

DDR1 and DDR2 receptors in the tyrosine kinases subfamily are homologous, and collagens share 
similar DDRs. Akt activation increases myeloid leukemia cell mobility and adhesion. COLI upregulate 
N-cadherin be in PDAC cells, stimulating MMP14, collagen, and EMT development in breast cancer 
and epithelial to mesenchymal traits through phosphorylation, activation, and blocking GSK 3β 
(Favreau et al., 2014; Huang et al., 2016; Rada et al., 2018; Oliveira-Ferrer et al., 2014; Procacci et al., 
2018). COLI inhibit E-cadherin in PDAC, affecting liver metastasis and EMT. This effect is associated 
with CCL7 and CCLIV-regulating chemokines. COLIV stimulates ERK1/2 and FAK during EMT, 
promoting Snail1, Snail2, and Sip1 expression, MMP2 secretion and cell migration. Changes in protein 
expression are linked to collagen mediating prostate cancer spread (Vaniotis et al., 2018; Espinosa 
Neira et al., 2012; Spivey et al., 2012). 

Integrin, a common adhesion protein in cancer cells, regulates cell activity by interacting with 
collagen. In squamous cell carcinoma, it promotes cell growth and invasion through various signaling 
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pathways. Collagen deposition is promoted by cutaneous SCC development, and altered collagen-
integrin interactions affect cancer cell behavior, particularly ovarian cancer cells. Acidic, cysteine-
rich proteins are associated with melanoma cells, promoting invasiveness (Hayashido et al., 2014; 
Ibbetson et al., 2013; Shen et al., 2012; Girotti et al., 2011). EMT changes, decreased differentiation, 
elevated clonogenicity, and colorectal cancer stem cell proliferation are resulting from melanoma 
cells activating various pathways. The formation of β1 integrin signaling complexes, radiation-
induced breast cancer cells using β1 integrin-FAK signaling, and the COLIV basement membrane 
causing collagen destruction are all involved (Smith et al., 2012; Blockhuys et al., 2013; Artym et al., 
2015; Yan et al., 2018). The COLIV/β1 integrin signaling pathway reduces cell stiffness and increases 
motility, affecting cell movement in melanoma. PI3K activation through α2β1 integrin influences 
adhesion, survival, aggregation, and migration in soft-tissue sarcoma, oral squamous cell carcinoma, 
glioblastoma, and breast cancer (Chen et al., 2014; Cattaruzza et al., 2013; Zhang et al., 2018; 
Stawikowski et al., 2014). Collagen stimulates cancer cell signaling pathways, reducing phospho-
STAT5 and ERK1/2 expression, enhancing tumor proliferation, and altering caspase-3/PI3K/AKT 
pathways. In cervical cancer, collagen fiber-containing protein COLI causes invasive protrusions, 
reducing Akt and ERK1/2 phosphorylation and resistance to inhibitors. Collagen glycation and 
carbamylation impact cancer cell spread, and TNF receptor 2/p38 MAPK signaling inhibits tumor 
growth (Liu et al., 2017; Shea et al., 2018; Barcus et al., 2017; Yamazaki et al., 2018; Brown et al., 
2015; Liu et al., 2017). Triple-negative breast cancer cell types exhibit crosslinking with prol-yl-4-
hydroxylase alpha 1 and alpha 2, promoting chemoresistance. Mutant p53 blocks transcriptional 
activity, preventing COL7A1 expression. Collagen crosslinking, interfibril branching, and matrix 
stiffness affect vascular growth and integrity. Imatinib treatment enhances tumor stromal oxygen 
levels and blood flow recovery (Goggins et al., 2018; Xiong et al., 2018; Amelio et al., 2018; Bordeleau 
et al., 2017; Burmakin et al., 2017). Metastases cause 90% of cancer fatalities, necessitating rapid 
intervention and understanding of molecular colonization mechanisms. The activation of harmful 
signaling pathways in ECM remodeling and the microenvironment significantly impacts tumor 
development, metastasis, and survival (Kitamura et al., 2015; McAllister et al., 2014; Gupta et al., 
2014).  

Extracellular amine oxidase, also known as lysyl oxidase (LOX), is an essential enzyme that modifies 
collagen and elastin to catalyze the process of fiber crosslinking. It stabilizes collagen fibers and 
fibrils; also, organ fibrosis and tumor stroma depend on collagen I, a substrate of LOX. Organ fibrosis 
may result from fibroblasts producing more ECM proteins (Osawa et al., 2013; Antar et al., 2023; 
Yamazaki et al., 2012). Participants are unaware of the detrimental consequences of collagen I, a 
crucial tumor component that is connected to metastases, a poor prognosis for breast cancer, cell 
invasion, and the development of malignancy. 

CONCLUSION 

People are unaware of collagen risks, including tissue loss and cancer growth. Collagen type I density 
triggers malignant transformation, and overexpression of MMP causes matrix breakdown in cancer. 
LOX dysregulation can lead to fibrous processes, tumor growth, metastasis, neurological disorders, 
and cardiovascular problems. 
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