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This review is a brief exploration of deploying Machine Learning (ML) in 
Traffic Engineering (TE) for Software Defined Networks (SDN). SDN 
changes traditional network management by separating the control plane 
from the data plane, opening up new possibilities for flexible and adaptive 
traffic control. As we show, TE in SDNs can optimize network performance 
by using resources more efficiently, cutting down on latency, and reducing 
congestion—all while responding to real-time conditions to maintain high 
Quality of Service (QoS). However, taking full advantage of these benefits 
requires advanced algorithms and real-time data analysis, which can be 
computationally demanding. TE also relies on having accurate, up-to-date 
information about the network. Meanwhile, ML is making SDNs more 
effective by integrating with technologies like Edge Computing, Network 
Function Virtualization (NFV), and the Internet of Things (IoT). This 
combination enables real-time analytics, quick decision-making, intelligent 
routing, load balancing, and stronger security. Still, these integrations bring 
fresh challenges in scalability and interoperability, meaning we need major 
investments in both infrastructure and expertise. Even with all the progress 
made so far, several hurdles remain. These include issues with scaling up, 
maintaining robust security, and making split-second decisions in real-time. 
Looking ahead, future research should concentrate on autonomous 
networking, energy-efficient ML techniques, and hybrid ML solutions, 
aiming to reach new heights in network security and performance. 

 
INTRODUCTION 
For a long time, the advancement of network structures has been significantly affected by the 
approach of SDN. SDN contribute to classic network by decoupling the network's control plane 
from its data plane, centralizing organized administration, and giving exceptional adaptability [1]. 
This design encourages energetic, organized arrangement and coordination but presents modern 
challenges in successfully overseeing and optimizing organized activity [2]. Conventional TE 
strategies, which depend on inactive steering and manual setup, frequently drop brief in adjusting 
to advanced systems' dynamic changes and complexities [3]. Recent studies show that traditional 
Traffic Engineering (TE) methods can be inefficient and lead to performance problems, especially in 
large-scale networks with diverse and unpredictable traffic patterns [4]. As demands for high 
performance and reliable network management continue to grow, the importance of network 
engineering within Software-Defined Networks (SDNs) becomes even more evident. SDN’s design 
centralizes control of network resources, enabling more sophisticated and adaptable management 
strategy [5]. SDN’s effectiveness in Traffic Engineering depends on harnessing cutting-edge 
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technologies like Machine Learning, which has shown significant promise for enhancing network 
operations. [6]. 

Machine Learning (ML) has the potential to revolutionize Traffic Engineering (TE) by offering 
predictive analytics, real-time optimization, and automated decision-making. [7]. or example, ML 
algorithms can process massive volumes of traffic data to predict congestion and adjust routing 
strategies on the fly, boosting network efficiency and reducing latency. Research has also shown 
that ML-driven traffic management can enhance network performance, leading to higher 
throughput and lower packet loss. [8-10]. Despite these advancements, combining ML with SDN for 
network engineering remains in its early stages, as ongoing studies continue to tackle challenges 
like data quality, model accuracy, and scalability. [11-12]. Exploring the combined power of ML and 
SDN is crucial for enhancing network performance and efficiency. By understanding how ML can 
expand SDN’s ability to manage and optimize networks, we can achieve more intelligent, versatile, 
and adaptable network solutions. This paper aims to provide a comprehensive review of current 
research and practices in this field, evaluate the effectiveness of various ML strategies, and identify 
both the opportunities and challenges that lie ahead. Through this study, we offer valuable insights 
into ML-enhanced Traffic Engineering (TE) in SDNs, highlight potential advancements, and propose 
directions for future research [13].  

The following sections show the structure of this review paper. Section 2 provides foundations of 
SDN and TE, building up an establishment for understanding their parts and the integration 
challenges. Section 3 investigates the transformative potential of ML in traffic networks inside 
SDNs, highlighting key progressions and applications. This will be discussed after examining the 
current state of investigation, centering on different ML strategies and their effect on network 
execution. Section 4 highlights the applications of ML in TE through cases. 

Moreover, section 5 addresses the challenges confronted when combining ML with SDN, including 
issues related to information quality, demonstrated precision, and adaptability. Section 6 bolsters 
later propels and patterns within ML within SDNs. In conclusion, the paper will conclude with a 
discourse of future inquiry relating to ML for TE in SDN, giving experiences and direction for 
progressing ML-enhanced network management in SDN environments. 

2. FOUNDATIONS OF SOFTWARE DEFINED NETWORKING (SDN) 
2.1 SDN architecture  

SDN is an inventive network design that decouples the control plane from the data plane, 
permitting centralized network activity management [14]. In traditional networks, both the control 
plane and the data plane are integrated into the same devices, like switches and routers. [15], SDN 
isolates these planes to upgrade adaptability, versatility, and control. In SDN architecture, the SDN 
Controller has a global view and manages overall network behavior by issuing instructions and 
gathering data. (See Figure 1) [16]. 

 
Figure 1: Software-defined network architecture [16] 
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SDN applications run on the best of the controller and characterize the network's behavior. These 
applications can incorporate organized administration, observation, security administration, and 
activity designing arrangements [17]. These devices connect to a central SDN controller, which 
enforces network policies and ensures optimal performance. Traditionally, each device’s control 
plane decides how traffic is routed. However, in an SDN framework, all those decisions are made by 
the centralized controller—often called the “brain” of the network—where it sets policies, directs 
traffic, and makes top-level decisions. [18]. In addition, the data plane—often called the forwarding 
plane—is in charge of actually moving data packets around, following the instructions set by the 
control plane. You’ll typically find it implemented in devices like switches, which abide by the 
controller’s rules. [19]. The sepration of the control and data planes in SDN offers critical focal 
points, such as expanded network agility and programmability. However, it also presents 
challenges, especially in terms of security and quality of service [20]. Centralizing the control plane 
simplifies network operations but also increases reliance on a single controller. Meanwhile, the 
shift to software-driven management calls for careful planning to ensure smooth performance. 
Striking the right balance among these factors is key to a successful SDN deployment. [21]. 

2.2 Traffic engineering in SDNs 

2.2.1 Definitions and goals of traffic engineering 

Applying ultimate Traffic Engineering (TE) scheme in SDNs, make networks run more smoothly and 
efficiently. [22]. The main goal is to carefully manage the flow of data throughout the network, 
minimizing congestion, reducing latency, and making the best use of available resources. [22, 23]. 
Traffic Engineering (TE) works to boost overall Quality of Service (QoS) by dynamically adjusting 
how data moves through the network. It plays a vital role in SDNs, offering more fine-grained 
control over resources. Leveraging SDN’s centralized management, traffic can be rerouted on the fly 
to relieve congestion and make the most of available resources. 

 [24]. However, this energetic process requires advanced algorithms and real-time information 
examination, which can be done computationally completely. Moreover, the success of TE in SDNs 
depends intensely on the precision of the network state information accessible to the controller 
[25]. Wrong or nonreal time information and data can lead to imperfect decisions, possibly 
compounding congestion or making bottlenecks.  

2.2.2 Techniques and strategies  

Compared to traditional routing protocols like IS-IS, which rely on fixed link costs, SDN offers a 
major step forward through dynamic network state management. Here, controllers can update link 
values in real time, making way for new routing strategies that optimize resource use and enhance 
QoS. Various TE methods have emerged, highlighting SDN’s ability to swiftly adapt to changing 
network conditions. For example, Google’s B4 architecture dynamically adjusts bandwidth and 
reroutes traffic to handle failures, ensuring reliable performance across its wide area network. [26, 
27].  

Techniques such as Hedera and DevoFlow have introduced effective methods for managing large 
data flows in data centers. Hedera identifies "elephant flows" that consume significant bandwidth 
and reroutes them to less congested paths [28]. Meanwhile, DevoFlow minimizes interactions 
between the control and data planes, allowing switches to handle routing decisions locally for 
smaller flows, thus reducing overhead [29]. However, both methods have their downsides: 
Hedera's periodic polling can lead to high resource utilization, while DevoFlow relies heavily on 
detecting elephant flows, which may not always be efficient [29, 30]. Mahout offers a promising 
alternative by integrating end-host modifications for flow detection, achieving quicker responses 
with less overhead, yet it necessitates changes to the end-host architecture [31]. 

Emerging frameworks like Atlas leverage machine learning for application-aware traffic 
classification, demonstrating a shift toward intelligent network management [32]. By accurately 
classifying traffic based on application types, networks can enforce policies that enhance 
performance and user experience. Tag-based classification further reduces processing overhead by 
marking packets at the edge. Additionally, multi-agent systems are being explored to improve task 
scheduling and resource management in distributed networks. The MSDN-TE mechanism 
exemplifies a proactive approach to traffic engineering by dynamically selecting optimal paths to 
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avoid congestion [33]. Collectively, these advancements reflect a trend toward more adaptive, 
efficient, and intelligent network management in SDN, highlighting both the potential benefits and 
the ongoing challenges in achieving seamless integration and performance optimization. Table 1 
give examples of traffic engineering techniques in the SDN network. 

Table 1: Examples of traffic engineering techniques in SDN 

Technique Description Routing Comments 
B4 [26] This approach employs 

centralized traffic engineering 
that operates above existing 
routing protocols and uses the 
Min-Max fairness method to 
allocate resources. 

It utilizes a hashed Equal-
Cost Multi-Path (ECMP) 
to distribute the load 
across multiple links. 

TE service can be halted, 
allowing packets to be 
routed using a short path 
forwarding method. 

Hedera [28] This technique identifies 
elephant flows at edge switches, 
marking a flow as an elephant if it 
reaches 10% of the network 
interface cards   (NIC) bandwidth 
threshold, with updates every 5 
seconds. 

It leverages a 
comprehensive view of 
the network to identify 
optimal, conflict-free 
paths for these large 
flows 

This method achieves a 
throughput of 15.4 b/s and 
enhances the network's 
bandwidth bisection 
compared to ECMP; however, 
the periodic polling may lead 
to high resource 
consumption on switches 

DevoFlow [29] This method marks flows as 
elephant flows when they exceed 
a size threshold of 1–10 MB, 
detected at edge switches. 

It employs wildcard 
OpenFlow rules and a 
static multi-path routing 
technique for traffic 
forwarding. 

A CLOS network can enhance 
throughput by up to 32%. 

Mahout [31] Mahout identifies elephant flows 
at end-hosts via a shim layer, 
with a threshold of 100 KB, using 
in-band signaling to notify the 
controller. 

It finds the optimal path 
for elephant flows while 
routing smaller flows 
with ECMP and assesses 
congestion by gathering 
statistics from switches. 

This technique can identify 
elephant flows in 
approximately 1.53 ms and 
offers 16% better bisection 
bandwidth than ECMP. 

MicroTE [34] This approach detects elephant 
flows at end-hosts and calculates 
the average traffic matrix 
between top-of-rack (ToR) 
switches. If the traffic deviates 
from this average by 20%, it is 
considered predictable. 

It utilizes short-term 
predictability for multi-
path routing, while other 
flows are managed by an 
ECMP strategy with a 
heuristic threshold. 

When traffic patterns are 
predictable, performance is 
near-optimal; otherwise, it 
behaves similarly to ECMP. 

Atlas [32] Atlas uniquely classifies 
applications using the C5.0 
machine learning model and 
requires users to install agents 
on their devices to gather data 
for training. 

It routes flows based on 
specific application 
requirements and 
network conditions. 

It achieves approximately 
94% accuracy but needs 
extensions to the OpenFlow 
protocol. 

MSDN-TE [33] This mechanism collects 
information about the network 
state and evaluates the load on 
paths to distribute traffic across 
multiple routes. 

It dynamically chooses 
the most efficient 
shortest paths among 
available options. 

MSDN-TE outperforms other 
forwarding methods like 
Shortest Path First, reducing 
download times by 48% 

From Tab1e 1, the techniques highlighted represent various approaches to traffic engineering in 
SDN. B4 utilizes centralized traffic engineering with Min-Max fairness and hashed ECMP to 
efficiently manage resources, allowing fallback to short path forwarding if needed. Hedera 
identifies large elephant flows at edge switches, optimizing their routing through a global network 
view while facing potential resource overhead due to periodic polling. DevoFlow employs wildcard 
rules to enhance throughput for elephant flows in CLOS networks, while Mahout focuses on end-
host detection of these flows, achieving rapid identification and improved bisection bandwidth. 
MicroTE and Atlas utilize traffic predictability and machine learning for application-specific 
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routing, respectively, with MSDN-TE dynamically selecting optimal paths, demonstrating 
significant improvements in performance and download times compared to traditional methods. 

Load balancing  

Load balancing is crucial for traffic engineering in SDN environments, ensuring that network traffic 
is distributed evenly across multiple paths or resources so no single path or device gets overloaded. 
[35]. This method is basic for optimizing network performance, moving forward asset utilization, 
and guaranteeing a high QoS. SDN permits real-time checking and alteration of network traffic. 
Load balancing can powerfully disperse activity based on current network conditions, making the 
network more responsive to changes in requests or startling traffic spikes [36]. This flexibility is 
essential for preserving service quality in ever-changing network conditions. By distributing traffic 
evenly, load balancing ensures that all available paths and resources are used efficiently. [37]. 
Beyond simply preventing overload on individual devices or links, this approach also helps 
maximize the entire network’s capacity. As shown in Figure 2, an OpenFlow switch receives traffic 
flows from the SDN environment and matches them against its internal flow data. [38]. When 
existing flow entries match, data is forwarded directly. If there’s no match, the packet header goes 
to the load balancer and SDN controller. From there, the SDN controller creates new flow tables, 
collaborates with the load balancer to find the best path, and exchanges periodic updates [38]. 

 

Figure 2: Load balancing in SDN [38] 

Load balancing improves network quality by distributing traffic across multiple paths. If one path 
fails, the controller can quickly redirect traffic to other available routes, reducing the risk of service 
interruptions. [39]. In conventional networks, personal devices often manage load balancing, which 
can lead to complicated setups. In an SDN environment, the centralized controller takes charge of 
load balancing, simplifying both configuration and management. This centralization also enables 
more advanced algorithms, which further enhance load balancing effectiveness. [40]. In addition, 
SDN's programmability permits advanced load-balancing strategies, but it can pose challenges to 
versatility. The controller processes large volumes of data to monitor traffic and make decisions, 
which can sometimes cause delays in managing network traffic. 

[41]. Successful load balancing requires advanced algorithms that consider components like traffic 
loads and interface capacities. However, relying on a central controller can be risky—if it fails or 
becomes overloaded, the entire load-balancing system may collapse. Malicious actors could also 
target the load-balancing process in SDN, which highlights the need for robust authentication and 
encryption for control messages. [42]. 

Path optimization  

In SDN, path optimization is a vital issue of traffic designing that emphasizing the selection of the 
most efficient routes for data to travel across the network. [42]. It relies on advanced algorithms 
that evaluate factors like latency, available bandwidth, and overall network conditions. [43]. The 
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main goal of path optimization is to cut down on delays, reduce congestion, and use network 
resources efficiently. By ensuring data packets travel along the shortest and least congested paths 
[44], it improves network performance through lower latency and higher throughput—both of 
which are crucial for real-time services like video conferencing and online gaming [20]. Path 
optimization algorithms continuously monitor traffic conditions and can adjust routes on the fly to 
avoid congested or faulty links. This kind of real-time adaptability is especially important in large, 
complex networks where traffic patterns can shift rapidly [25]. 

As shown in Figure 3, the network includes two main types of devices: Provider Edge (PE) switches 
and Core Routers (CR). In a typical MPLS setup [45], PE switches can initiate or terminate Label 
Switched Paths (LSPs), while both PE and CR devices can exchange labels in the middle of a path. PE 
switches connect to Customer Edge (CE) switches, which act as external traffic sources and 
destinations.Following the OSHI architecture proposed in [46], both PE and CR devices operate as 
hybrid IP/SDN nodes. There’s no need for a separate MPLS control plane in these devices; instead, 
an SDN-based approach uses the OpenFlow protocol to program the flow tables of what’s called an 
OpenFlow Capable Switch (OFCS). This allows dynamic adjustments to the network’s configuration 
without requiring traditional MPLS control plane mechanisms [46]. 

 

Figure 3: Traffic engineering (TE) path optimization [45] 

SDN ensures that all available network resources are used efficiently by optimizing paths based on 
the current network conditions. This approach prevents some links from becoming overused while 
others remain underutilized, resulting in a more balanced and effective use of the network’s 
capacity [47]. Additionally, path optimization can be customized to meet specific Quality of Service 
(QoS) requirements by prioritizing certain types of traffic over others. For example, latency-
sensitive applications can be routed through the fastest available paths, while less critical traffic can 
take longer routes. This flexibility is essential for maintaining high service quality in environments 
with diverse traffic types [47]. 

However, calculating the best paths is complex and must consider factors like latency, bandwidth 
availability, link failures, and routing needs [48]. As networks grow, the computational demands on 
the SDN controller increase, which can lead to scalability challenges and less accurate routing 
decisions. If the controller doesn’t have an accurate view of the network, it can cause increased 
congestion or higher latency. Additionally, the training process for these systems can introduce 
delays and temporary performance drops [49]. Moreover, path optimization can become a target 
for malicious attacks, potentially leading to data breaches or disruptions in service. 

3. MACHINE LEARNING FUNDAMENTALS 
3.1 Introduction to machine learning 

Machine Learning (ML) is a subset of AI that focuses on creating systems that can learn from data 
and make decisions based on that information [50]. Instead of being explicitly programmed to 
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perform a task, ML models improve their performance through exposure to data. Figure 4 
illustrates how ML-related models have evolved over time [51]. ML is particularly effective for 
drawing conclusions from large, representative datasets. These techniques are designed to identify 
patterns and extract hidden information from data, making them well-suited for problem-solving in 
SDNs. For instance, in SDN, a classification problem could be set up to detect anomalous activity. 
The most common ML algorithms used for traffic classification in SDNs are shown in Figure 4 [51]. 

 

Figure 4: ML models development over the Years [51] 

3.1.1 Basic ML algorithms and models 

Linear regression  

Is a simple algorithm commonly used for regression tasks, where the goal is to predict a continuous 
output based on input features [52]. The model assumes a straight-line relationship between the 
inputs and the output. Its simplicity and ease of interpretation make it a popular choice for basic 
problems. However, it assumes a linear relationship between variables, which may not always 
reflect real-world data [53]. As a result, its performance can suffer in more complex situations 
where the relationships between variables are non-linear. Figure 8 illustrates how the linear 
regression algorithm works and its flowchart [54]. 

 

Figure 8: Linear regression implementation flow chart [54] 
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The linear regression model is designed as 

h(х)=w1 x1+w2 x2+w3 x3+⋯+ wn xn + bх 

Equation 1, where w is the weight function, b is the deviation function, and x is the input variable, 
outlines the components of the direct relapse show. When there is one fair variable, the straight 
regression model is ordinarily a straight line in a plane or maybe a straight line. A model is a plane 
in space when there are two factors; in addition, the model will be more highly dimensional when 
there are more factors. 

Decision Trees are a tree-based model used for both regression and classification tasks. They work 
by splitting data into subsets based on the values of input attributes, creating a decision tree 
structure [55]. Decision trees are intuitive and easy to visualize, making them useful for 
understanding how decisions are made. However, they can easily overfit the training data, which 
leads to poor generalization when applied to new, unseen data. To address this, ensemble methods 
like random forests are often used, though they add complexity to the model [56]. Additionally, 
decision trees create rules from training datasets using repeated splitting to categorize traffic [57]. 
They are commonly applied in cybersecurity to detect denial-of-service (DoS) attacks by analyzing 
factors like traffic rate, size, and duration. Autonomous vehicles, for example, can detect command 
injection attacks by analyzing data volume, network flow, and CPU usage [58], as shown in Figure 9. 
This method is popular because of its straightforward nature and ability to analyze traffic in real-
time. Designers can easily identify unusual traffic patterns and classify them as normal or potential 
attacks. Once a set of rules is established, the AI system can provide immediate alerts if suspicious 
activity is detected. 

 

Figure 9: Decision trees model [58] 

Support vector machines (SVM) are classification algorithms that aim to find the optimal 
hyperplane to separate different classes in the feature space [59]. SVMs are particularly effective in 
high-dimensional spaces and are widely used in areas like bioinformatics and text classification. 
They excel in binary classification tasks and can manage non-linear data by using kernel functions 
(as shown in Figure 10) [60]. However, SVMs can be computationally expensive, especially with 
large datasets, and their performance is heavily influenced by the choice of kernel and 
regularization parameters. SVMs also face challenges in multiclass classification, often requiring 
approaches like one-vs-one or one-vs-all, which can add complexity to the model [61]. 

Eq.1   
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Figure 10: Flow chart of SVM training process [60] 

In 1995, Vapnik introduced the Support Vector Machine (SVM) method, an ML theory that uses an 
algorithm to find the hyperplane that maximizes the margin [62]. SVMs are used in both regression 
and classification tasks, and when applied to regression problems, they are known as Support 
Vector Regression (SVR). An SVM defines the regression function, f(Xsvm), in such a way that the 
target, Vsvm, falls within a specified range. 

f (xsvm)= ˆysvm = wTxsvm + b 

f (xsvm) – ε ≤ ysvm ≤ f (xsvm) + ε, ε > 0 

Where xsvm is the input that contains [x1   xe   xobs], and wT is the transposed weighting matrix; 
ysvm is the target that signifies the true ionosphere delay within the region of extrapolation, and xε 
is the acceptable error level for ysvm. In many practical cases, ysvm is not in the range of (f 
(xsvm)−ε, f (xsvm)+ε), and ysvm is frequently adjusted to the range of (f (xsvm)− ε, f (xsvm) + ε), 
where ε is a slack variable. The optimal regression function is determined when the slack variable 
total magnitude, ⅀i ξ i is reduced. Besides, the distance between the support vector and f (xsvm) 
should be maximized; this distance is called the margin, and the margin may also be minimized 
[60]. Consequently, the optimal regression function minimizes || w || and ξ to achieve the maximum 
margin. 

3.2 ML techniques for traffic engineering in SDN  

ML techniques are progressively becoming functional for traffic engineering in SDN to progress 
management, security, and performance. 

3.2.1 Classification  

Classification algorithms are used to categorize network traffic, identify intrusions, and detect types 
of network attacks [5]. In networking, classification enables real-time, automated decision-making, 
such as detecting malicious activity or classifying data packets based on priority [57]. For example, 
in smart city applications, to ensure Quality of Service (QoS), network traffic, control estimation, 
security, and resource management need to be organized into specific categories, a process known 
as traffic classification [63]. The most basic method for traffic classification involves mapping 
application traffic to specific port numbers [64]. However, since many applications use dynamic 

Eq. 3 
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port numbers, this approach can lead to incorrect classifications. Alternatives to port-based 
methods, such as payload-based algorithms, classify traffic by analyzing the packet payloads [64]. 

Due to privacy and security concerns, the packet payload is not accessible when the traffic is 
encrypted. As a result, ML and DL-based methods can be used to address the limitations of 
traditional approaches (Figure 11) [65]. Ren, Gu, and Wei [66] proposed a Tree-RNN model to 
classify network traffic into 12 distinct categories. This deep learning model features a tree 
structure, where each node corresponds to a set of classes, allowing the large classification task to 
be broken down. Additionally, Lopez-Martin et al. [67] proposed an integrated CNN and RNN-based 
network to classify traffic from IoT services and devices. Unlike traditional ML methods, this 
approach eliminates the need for feature selection, automatically extracting complex patterns from 
the input data. 

Figure 11, which demonstrates a deep learning classifier for network traffic classification, can be 
directly related to ML applications in SDN for traffic engineering [65]. In this scenario, network 
traffic from IoT devices is first analyzed by extracting important features like packet payload, inter-
arrival time, and source/destination ports.  The deep learning classifier is capable of distinguishing 
between various types of traffic, such as web browsing, video streaming, or social networking, and 
can categorize them into priority levels (low, medium, high). 

For instance, in SDN, when the network detects high-priority traffic, such as video conferencing, the 
SDN controller can automatically allocate more bandwidth or choose a lower-latency path for that 
traffic, improving the user experience. On the other hand, low-priority traffic, such as email or 
background updates, can be routed through less congested or lower-priority paths. The continuous 
feedback loop of real-time traffic classification by ML models, combined with dynamic 
reconfiguration by SDN, enables more intelligent and efficient traffic management in complex 
networks. This is especially beneficial in environments with diverse and high-volume traffic, such 
as IoT ecosystems [65]. 

 
Figure 11: Deep Learning (DL)-based network traffic classification for internet of things (IoT) 

applications [65] 

Conversely, classification models' accuracy depends on the labeled training data quality and 
capability to generalize to new attacks and traffic types. There is also a false negative and false 
positive risk, which can have substantial consequences in the context of network security. 

3.2.2 Anomaly detection  

Clustering groups similar network patterns or entities, which helps in user segmentation and 
anomaly detection [68]. However, its effectiveness relies on the choice of distance metrics and the 
algorithm used, and variations in initial parameter settings can lead to different outcomes. Anomaly 
detection methods identify unusual patterns in network traffic, which could indicate security 
breaches, system failures, or performance issues [69]. This is crucial for network security, as it can 
uncover threats that don't match known attack signatures. Defining what constitutes an "anomaly" can be 
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difficult, leading to missed detections or false alarms [70]. Anomaly detection models also need to adapt to 
evolving network conditions, which can complicate their deployment and ongoing maintenance. Additionally, 
the noise and high dimensionality of network data can make it challenging to differentiate between genuine 
inconsistencies and acceptable variations. Michau and Fink's study [71] supported the concept of domain 
adaptation for anomaly detection. They collected Condition Monitoring (CM) data from various units in a 
fleet. Because each unit and its environmental conditions had unique characteristics, the data exhibited 
different distributions, a phenomenon referred to as "Domain Shift." An analysis was performed using their 
proposed ADAU approach, which relied solely on noise-free CM data (represented by blue triangles and 
green stars), as shown in Figure 12 [71]. 

 
Figure 12: Anomaly detection [71] 

3.2.3 Predictive analytics  

Predictive analytics uses historical data to forecast future network conditions, including resource 
needs, potential failures, and traffic surges [72]. This allows for proactive network management, 
enabling administrators to allocate resources or take preventative actions before issues arise. As 
networks continue to grow in complexity and scale, relying solely on human-driven, centralized 
control will no longer be sufficient to handle the increasing complexity and unpredictable crises 
that may occur [73]. By integrating AI technologies and leveraging the vast data collected by the 
SDN controller for deep learning, AI-powered systems could address up to 90% of network security 
attacks or issues, offering valuable solutions for reference [74]. In terms of network planning and 
path optimization, future networks must meet requirements for low latency and high throughput 
[75]. Traditional path planning algorithms struggle to provide optimal traffic management 
solutions in real-time, especially as network traffic fluctuates. With AI, large-scale traffic data can be 
used to predict and efficiently plan traffic flows across network interfaces [76]. Artificial 
intelligence can play a crucial role in various aspects of network management, path planning, 
security, anomaly detection, and more. Figure 13 illustrates intelligent network traffic optimization 
and management [77]. It shows a layered approach to network management that combines SDN 
and AI. The intelligent control layer is made up of three main components: the AI analysis module, 
the SDN controller, and the network status collection module. The AI system processes real-time 
data to assess network conditions, optimize traffic flow, and predict potential problems, while the 
SDN controller uses these insights to adjust network configurations [77]. The network forwarding 
layer represents the physical infrastructure, including the Metropolitan Area Network and 
Backbone Network, along with distributed data centers (Edge, Regional, and Core) that work 
together to manage data traffic [77]. The data from this layer is continually sent to the AI system 
and SDN controller, enabling adaptive decision-making that improves efficiency, reduces latency, 
and enhances fault management [77]. This integrated AI and SDN architecture provides scalable, 
dynamic control, making it well-suited for complex environments like 5G networks and large-scale 
data infrastructures. 
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Figure 13: The architecture of intelligent network control [77] 

However, the accuracy of prediction models relies heavily on the quality and availability of 
historical data, as well as the models' ability to adapt to unexpected changes or events in network 
behavior. In dynamic environments, predictive models can quickly become outdated, requiring 
regular updates and retraining to stay effective. 

4. APPLICATIONS OF ML FOR TRAFFIC ENGINEERING IN SDN  
4.1 Traffic prediction and forecasting 

Predicting traffic patterns is crucial for effective network management as it allows for improved 
user experience, optimized routing, and proactive congestion control [78]. Traditional methods 
relied on static models and historical data, which often struggled in dynamic environments [79]. 
Machine learning (ML) has transformed traffic prediction by enabling models to learn from vast 
amounts of data and adapt to changing conditions. Google Maps, for instance, uses ML and AI to 
enhance traffic forecasting, leveraging models that analyze both historical and real-time traffic data 
[80]. The key advantage of ML in this context is its ability to process large datasets and provide 
accurate, real-time predictions that improve route planning and reduce travel times for users. 
Google continuously refines its traffic predictions by using various ML models, including time-
series forecasting and regression, which take into account factors like traffic conditions, road 
closures, and weather, adjusting predictions in real-time. Google Maps’ ML-powered traffic 
forecasts have become an essential tool for millions of users, helping to optimize routes and reduce 
congestion on a global scale [80]. While ML significantly improves traffic forecasting, concerns 
remain about its dependence on data quality and the challenges of processing data in real-time in 
highly variable environments. Additionally, privacy and security issues related to the vast amounts 
of user data collected require ongoing attention. 

4.2 Dynamic resource allocation 

In networking, dynamic resource allocation is essential for maximizing the use of limited resources 
like computing power and bandwidth. Machine learning (ML) adds flexibility by enabling real-time 
adjustments based on current and predicted network demands, improving efficiency [81]. For 
example, Netflix uses ML to measure performance [82]. The value of ML in this context lies in its 
ability to accurately predict content demand and allocate resources accordingly, ensuring smooth 
and high-quality streaming experiences. Similarly, companies like Amazon, YouTube, and Netflix 
leverage ML to explore ways to better serve their customers and generate personalized 
recommendations for movies and TV shows [82]. By using ML for dynamic resource allocation, 
Netflix can consistently provide a high-quality experience to its global user base while reducing 
infrastructure costs. 
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While ML offers substantial benefits in resource allocation, implementing these systems and the 
need for ongoing model retraining can be challenging. Additionally, the heavy reliance on accurate 
predictions highlights the importance of having robust data handling and processing systems in 
place. 

4.3 Anomaly detection and fault management 

In network management, quickly identifying and responding to anomalies is crucial for maintaining 
security and performance. Traditional methods often relied on static thresholds and manual 
analysis, which were prone to errors and slow responses. Machine learning (ML) enhances anomaly 
detection by identifying deviations and patterns that signal potential issues [83]. This approach has 
been widely adopted by organizations, leading to improvements in network reliability, reduced 
downtime, and faster responses to emerging problems [84]. While ML-driven anomaly detection is 
highly effective, its success depends on the quality and variety of the available data. False positives 
remain a challenge, as they can result in unnecessary caution and resource allocation. Additionally, 
the complexity of ML models requires advanced infrastructure and skilled personnel for 
implementation and ongoing maintenance. 

4.4 Load balancing and path optimization 

Effective path optimization and load balancing are crucial for maintaining network performance, 
especially in large, distributed systems. Machine learning (ML) provides a solution by dynamically 
optimizing path selection and load distribution based on current and predicted traffic conditions. 
For example, Facebook uses ML to optimize load balancing across its global data centers, ensuring 
efficient traffic delivery and minimizing latency [85]. ML enables continuous learning from network 
data, allowing the system to adapt to changes and improve load-balancing strategies over time. 
Facebook's infrastructure leverages predictive analytics and reinforcement learning within SDNs to 
efficiently distribute traffic across its data centers [85]. The ML models take into account factors 
like network latency, server load, and historical traffic patterns to make real-time routing decisions. 

This approach has allowed Facebook to maintain high performance and reliability on its platform 
during peak traffic periods, enhancing the user experience [86]. While ML-based load balancing 
offers significant advantages, it also introduces complexity and requires ongoing monitoring and 
adjustment. The accuracy of ML models depends heavily on the quality of input data, and any errors 
can lead to suboptimal routing decisions [87]. Additionally, the carbon footprint and energy 
consumption of large-scale data centers are critical factors that must be balanced with performance 
goals. ML is proving to be a transformative force in traffic engineering, offering advanced solutions 
that traditional methods may not be able to achieve. Examples from leading companies like Google, 
Netflix, IBM, and Facebook highlight ML's practical benefits, from improving traffic forecasting to 
optimizing resource allocation and enhancing network reliability. However, implementing ML 
comes with challenges, including data reliance, complexity, and the need for continuous monitoring 
and adjustment. Overcoming these challenges is essential for fully realizing the potential of ML in 
traffic engineering. 

5. CHALLENGES AND CONSIDERATIONS 
As machine learning (ML) becomes increasingly integrated into SDN and other network 
management systems, there are several challenges and considerations that need to be addressed 
for successful implementation and operation. This section covers key issues, including the need for 
high-quality data, ensuring model accuracy and performance, scalability and real-time processing, 
as well as security and privacy concerns. 

5.1 Data requirements and quality 

Data quality is crucial for the success of any ML application, especially in networking and SDN. 
High-quality data ensures that ML models can learn effectively and make accurate predictions or 
decisions [88]. Poor data quality, such as missing values, noise, or inconsistencies, can lead to 
flawed models, resulting in degraded network performance or system failures. The importance of 
data quality cannot be overstated—incorrect or biased data can cause ML models to learn 
inaccurate patterns, leading to faulty predictions and decisions [89]. For example, in a network 
environment, if an ML model is trained on incomplete traffic data, it may fail to predict congestion 
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accurately, leading to poor load balancing or inefficient resource allocation [90]. Ensuring data 
quality requires rigorous data collection, preprocessing, and ongoing validation processes. 
However, achieving high data quality is challenging, particularly in large, dynamic systems where 
data is continuously generated from various sources. 

Data collection and preprocessing are essential steps in preparing data for ML models, especially in 
SDNs where data comes from various sources, including network traffic, logs, and sensors [91]. 
Preprocessing involves cleaning, normalizing, and transforming this data into a format suitable for 
ML models. Challenges include handling large volumes of data, dealing with missing or incomplete 
information, and ensuring data consistency across different sources [92]. The process of data 
collection and preprocessing is often time-consuming and resource intensive. In SDNs, where real-
time data processing is crucial, delays in preprocessing can hinder the timely application of ML 
models. Additionally, the diversity of data sources and formats creates significant challenges in 
ensuring the data is processed accurately and consistently [93]. Overcoming these challenges 
requires continuous data engineering practices, which can be complex and costly for the overall 
system. 

5.2 Model accuracy and performance 

There is often a trade-off between the accuracy of an ML model and its computational efficiency 
[94]. Highly accurate models tend to be more complex, requiring greater computational resources, 
which results in slower training times. On the other hand, simpler models may be faster but less 
accurate, making them better suited for real-time applications. In SDNs, where real-time decision-
making is crucial, finding the right balance between model accuracy and computational efficiency is 
a significant challenge [95]. While a highly accurate model may provide better network 
performance predictions, it could introduce latency due to its heavy computational demands [96]. 
This trade-off needs to be carefully managed to ensure the model can deliver timely and reliable 
results without overburdening the network’s computational resources. Techniques like model 
pruning, feature selection, and using approximate algorithms can help, but they must be applied 
carefully to avoid significant accuracy loss [36]. 

Additionally, evaluating the performance of ML models is crucial to ensure they meet the required 
standards for accuracy, precision, recall, and other relevant metrics. Common evaluation methods 
include feature selection, cross-validation, confusion matrices, appropriate algorithm selection, and 
ROC-AUC plots [61]. In the context of SDNs, it's also important to consider metrics related to overall 
network performance, such as latency and throughput. Choosing the right evaluation metrics is 
essential for assessing the effectiveness of an ML model. In networking applications, traditional 
metrics like accuracy may not fully reflect the model's impact on network operations [97]. For 
example, a model with high accuracy might still cause unacceptable delays if it is slow in processing 
data. Therefore, it's critical to combine standard ML metrics with network-specific ones to gain a 
more complete understanding of the model's performance. Additionally, models should be 
continually updated as network conditions and data evolve, since changes over time can affect their 
effectiveness. 

5.3 Scalability and real-time processing 

Scaling machine learning models to handle large networks presents a major challenge due to the 
rapid growth in data volume and computational demands [98]. This can create bottlenecks in 
decision-making processes. In SDNs, models that work well in smaller environments may struggle 
to perform effectively at scale, leading to wasted resources and potential system failures. As 
communication networks become more complex and dynamic, developing efficient traffic 
engineering (TE) policies become even more challenging, especially when optimizing traffic 
scheduling. Traditional methods often rely on fixed traffic models and pre-defined objectives, which 
might not always provide efficient solutions. However, combining Deep Reinforcement Learning 
(DRL) with SDN presents a promising way to create a model-free TE strategy using machine 
learning. Many existing DRL-based TE solutions face scalability issues, limiting their usefulness in 
larger networks. To overcome this challenge, ScaleDRL, a new network control framework, was 
introduced to integrate control theory with DRL techniques [92].This approach applies principles 
from pinning control theory to identify and assign critical links within the network. By collecting 
traffic distribution data from the SDN controller, ScaleDRL dynamically adjusts the weights of these 
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key links using a DRL algorithm. This allows for real-time changes to flow paths through a weighted 
shortest path algorithm, which is updated based on the adjusted link weights. Simulation results 
showed that ScaleDRL could significantly reduce the average end-to-end transmission delay by up 
to 39%, outperforming other leading DRL-based TE methods across various network topologies 
[92]. While real-time processing is vital for optimal network performance, it introduces challenges 
like computational costs, delays, and issues with data consistency and synchronization. Effective 
planning and resource allocation are crucial to achieving this goal. 

5.4 Security and privacy concerns 

Integrating machine learning (ML) into SDNs introduces privacy risks and new security challenges. 
For example, ML models can be vulnerable to adversarial attacks, where an attacker manipulates 
input data to make the model produce incorrect decisions [96]. Additionally, the collection and 
processing of large amounts of data for ML purposes can raise privacy concerns, especially if 
sensitive or identifiable information is involved. Privacy and security are critical considerations 
when implementing ML in SDNs. Adversarial attacks can have serious consequences, such as 
network disruptions or data breaches, if the ML model is tricked into making harmful decisions 
[97]. Protecting against these attacks requires robust security measures, including the use of secure 
ML techniques, model validation, and monitoring for unusual patterns that could indicate an attack. 
Privacy concerns must also be addressed, particularly when handling sensitive data. Techniques 
such as data anonymization, secure multi-party computation, and differential privacy can help 
mitigate these risks, but they may also add complexity and reduce the efficiency of the ML models. 

6. RECENT ADVANCES AND TRENDS 
The intersection of machine learning (ML) and Software-Defined Networking (SDN) is a rapidly 
evolving field, with continuous advancements and emerging trends shaping the future of network 
management. This section explores recent innovations in ML techniques for SDN, the integration of 
ML with other technologies, and future research directions that could address current gaps and 
lead to further breakthroughs. 

6.1 Emerging ML techniques 

In recent years, there has been a surge of innovative ML techniques applied to SDN, driven by the 
demand for more flexible and efficient network management. Notable advancements include Deep 
Reinforcement Learning (DRL), which combines deep learning with reinforcement learning to 
create models that can learn through trial and error in their environment [99]. In SDNs, DRL has 
been applied to dynamic resource allocation, traffic management, and security enforcement, 
offering more adaptable and robust solutions compared to traditional methods [100]. Additionally, 
the Unified Learning approach allows ML models to be trained across decentralized data sources, 
preserving data privacy while benefiting from large-scale datasets. In SDNs, unified learning can 
optimize network performance across different areas without centralizing sensitive information. 
On the other hand, as ML models become increasingly complex, there is a growing need for 
transparency in how these models make decisions. Explainable AI (XAI) methods are being 
developed to provide insights into the decision-making process of ML models in SDNs, which is 
essential for troubleshooting, compliance, and building trust [101]. 

While these emerging methods hold great potential, they also present several challenges. For 
example, DRL demands substantial computational resources and time for training, which can be a 
significant obstacle in real-time SDN environments [11, 102]. Federated learning helps address 
privacy concerns but introduces new difficulties in ensuring model consistency and managing 
diverse data types. Additionally, while XAI improves transparency, it could also make models 
vulnerable to incompatible attacks if not carefully designed. These advancements represent a 
significant step forward, but their practical implementation requires careful consideration of the 
trade-offs and potential risks. 

6.2 Integration with other technologies 

The integration of machine learning with other network management technologies is driving 
significant improvements in the efficiency and capabilities of SDNs. For example, in Edge 
Computing, ML models are increasingly being deployed at the network edge, where data is 
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generated. This integration enables real-time analytics and decision-making closer to the data 
source, reducing latency and enhancing responsiveness in SDN environments. 

By integrating machine learning with Network Function Virtualization (NFV), network functions 
become more flexible and efficient [103]. For example, ML can predict demand and optimize the 
allocation of virtual resources in real-time, leading to better resource utilization and reduced 
operational costs. The growth of Internet of Things (IoT) devices has added complexity to network 
management [61]. ML techniques are incorporated with SDN to handle the massive amounts of data 
generated by IoT devices, ensuring efficient routing, load balancing, and security [96]. 

Integrating machine learning with these advancements enhances the capabilities of SDNs, but it 
also introduces complexity. As edge computing reduces latency, it requires a distributed system 
that can be difficult to manage and secure. The combination of ML with NFV and IoT adds new 
dimensions of scalability and interoperability, which must be carefully managed to prevent 
bottlenecks and security risks [97]. Additionally, these integrations demand significant investments 
in infrastructure and expertise, which could be a challenge for smaller organizations. 

7. FUTURE RESEARCH DIRECTIONS 
Despite significant progress in ML for SDN, there are still research gaps to be addressed. Security 
vulnerabilities, scalability issues, and real-time decision-making remain challenges that need 
attention. Future research should focus on ML-driven approaches, energy-efficient ML, and 
autonomous networking, with the integration of ML and AI technologies offering more flexible 
solutions for SDN. Energy-efficient ML models, which balance performance with energy savings, are 
also crucial. While autonomous networking holds promise, it raises ethical and security concerns. 
Addressing these challenges is essential for the continued advancement of ML in SDN, as it could 
unlock new levels of performance and security. Further research in these areas could lead to 
important breakthroughs in the field. 

REFERENCES 
Z. Liu, Y. Wang, F. Feng, Y. Liu, Z. Li, and Y. Shan, "A DDoS detection method based on feature 

engineering and machine learning in software-defined networks," Sensors, vol. 23, no. 13, p. 
6176, 2023. 

Y. Wang, X. Wang, M. M. Ariffin, M. Abolfathi, A. Alqhatani, and L. Almutairi, "Attack detection 
analysis in software-defined networks using various machine learning method," Computers 
and Electrical Engineering, vol. 108, p. 108655, 2023. 

M. R. Ahmed, S. Shatabda, A. M. Islam, and M. T. I. Robin, "Intrusion Detection System in Software-
Defined Networks Using Machine Learning and Deep Learning Techniques--A 
Comprehensive Survey," Authorea Preprints, 2023. 

A. A. Bahashwan, M. Anbar, S. Manickam, T. A. Al-Amiedy, M. A. Aladaileh, and I. H. Hasbullah, "A 
systematic literature review on machine learning and deep learning approaches for 
detecting DDoS attacks in software-defined networking," Sensors, vol. 23, no. 9, p. 4441, 
2023. 

J. Cunha et al., "Enhancing Network Slicing Security: Machine Learning, Software-Defined 
Networking, and Network Functions Virtualization-Driven Strategies," Future Internet, vol. 
16, no. 7, p. 226, 2024. 

A. Shirmarz and A. Ghaffari, "Network traffic discrimination improvement in software defined 
network (SDN) with deep autoencoder and ensemble method," Journal of Ambient 
Intelligence and Humanized Computing, vol. 14, no. 5, pp. 6321-6337, 2023. 

M. Sreelekha and Midhunchakkaravarthy, "Intelligent Transportation System for Sustainable and 
Efficient Urban Mobility: Machine Learning Approach for Traffic Flow Prediction," in 
International Conference on Multi-Strategy Learning Environment, 2024: Springer, pp. 399-
412.  

H. Elubeyd and D. Yiltas-Kaplan, "Hybrid deep learning approach for automatic DoS/DDoS attacks 
detection in software-defined networks," Applied Sciences, vol. 13, no. 6, p. 3828, 2023. 

P. A. D. S. N. Wijesekara and S. Gunawardena, "A Machine Learning-Aided Network Contention-
Aware Link Lifetime-and Delay-Based Hybrid Routing Framework for Software-Defined 
Vehicular Networks," in Telecom, 2023, vol. 4, no. 3: MDPI, pp. 393-458.  



Khalifa et al.                                                                                           Brief Review of Using Machine Learning for Traffic Engineering 

1754 

M. Elnawawy, A. Sagahyroon, and T. Shanableh, "FPGA-based network traffic classification using 
machine learning," IEEE Access, vol. 8, pp. 175637-175650, 2020. 

W. C. Chanhemo, M. H. Mohsini, M. M. Mjahidi, and F. U. Rashidi, "Deep learning for SDN-enabled 
campus networks: proposed solutions, challenges and future directions," International 
Journal of Intelligent Computing and Cybernetics, vol. 16, no. 4, pp. 697-726, 2023. 

N. Bilal, S. Askar, and K. Muheden, "Challenges and Outcomes of Combining Machine Learning with 
Software-Defined Networking for Network Security and management Purpose: A Review," 
Indonesian Journal of Computer Science, vol. 13, no. 2, 2024. 

A. A. Alashhab et al., "Enhancing DDoS attack detection and mitigation in SDN using an ensemble 
online machine learning model," IEEE Access, 2024. 

N. Kumari and K. Kathuria, "Overview of SDN Building Foundations and Applications," Journal of 
Research in Science and Engineering, vol. 6, no. 7, pp. 43-53, 2024. 

R. Network and P. M. Gupta, "6 Software-Defined," Software-Defined Network Frameworks: Security 
Issues and Use Cases, p. 89, 2024. 

M. K. Awad, M. El‐Shafei, T. Dimitriou, Y. Rafique, M. Baidas, and A. Alhusaini, "Power‐efficient 
routing for SDN with discrete link rates and size‐limited flow tables: A tree‐based particle 
swarm optimization approach," International Journal of Network Management, vol. 27, no. 5, 
p. e1972, 2017. 

D. Perepelkin, M. Ivanchikova, and T. Nguyen, "Research of Multipath Routing and Load Balancing 
Processes in Software Defined Networks Based on Bird Migration Algorithm," in 2023 
International Russian Smart Industry Conference (SmartIndustryCon), 2023: IEEE, pp. 247-
252.  

S. Keerthiga and R. Murugeswari, "Survey on software defined networking in IoT," in AIP Conference 
Proceedings, 2023, vol. 2548, no. 1: AIP Publishing.  

C. N. Tadros, B. Mokhtar, and M. R. Rizk, "Software defined network-based management 
architecture for 5g network," in Paradigms of Smart and Intelligent Communication, 5G and 
Beyond: Springer, 2023, pp. 171-195. 

M. K. Vadlamudi and K. Rayudu, "A Review on Traffic Engineering Systems in Software-defined 
Networks using Routing Mechanisms," in 2024 3rd International Conference on Applied 
Artificial Intelligence and Computing (ICAAIC), 2024: IEEE, pp. 1549-1554.  

B. J. Ospina Cifuentes, Á. Suárez, V. García Pineda, R. Alvarado Jaimes, A. O. Montoya Benitez, and J. 
D. Grajales Bustamante, "Analysis of the Use of Artificial Intelligence in Software-Defined 
Intelligent Networks: A Survey," Technologies, vol. 12, no. 7, p. 99, 2024. 

X. Pei, P. Sun, Y. Hu, D. Li, B. Chen, and L. Tian, "Enabling efficient routing for traffic engineering in 
SDN with Deep Reinforcement Learning," Computer Networks, vol. 241, p. 110220, 2024. 

B. Lin, Y. Guo, H. Luo, and M. Ding, "TITE: A transformer-based deep reinforcement learning 
approach for traffic engineering in hybrid SDN with dynamic traffic," Future Generation 
Computer Systems, vol. 161, pp. 95-105, 2024. 

S. Mehraban and R. K. Yadav, "Traffic engineering and quality of service in hybrid software defined 
networks," China Communications, vol. 21, no. 2, pp. 96-121, 2024. 

U. Prabu and V. Geetha, "Towards the implementation of traffic engineering in SDN: a practical 
approach," in Inventive Systems and Control: Proceedings of ICISC 2023: Springer, 2023, pp. 
155-161. 

S. Dou, L. Qi, J. Wang, and Z. Guo, "EPIC: Traffic Engineering-Centric Path Programmability Recovery 
Under Controller Failures in SD-WANs," IEEE/ACM Transactions on Networking, no. 01, pp. 
1-14, 2024. 

Z. Guo, C. Li, Y. Li, S. Dou, B. Zhang, and W. Wu, "Maintaining the Network Performance of Software-
Defined WANs With Efficient Critical Routing," IEEE Transactions on Network and Service 
Management, 2023. 

F. Hao, S. Jing, and C. Zhao, "Link load balancing scheme for elephant flow in SDN data center," in 
2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud 
Computing, Sustainable Computing & Communications, Social Computing & Networking 
(ISPA/BDCloud/SocialCom/SustainCom), 2023: IEEE, pp. 1026-1033.  

[29] M. Hamdan et al., "Elephant flow detection intelligence for software-defined networks: a 
survey on current techniques and future direction," Evolutionary Intelligence, pp. 1-19, 
2024. 



Khalifa et al.                                                                                           Brief Review of Using Machine Learning for Traffic Engineering 

1755 

M. Hassan, M. A. Gregory, and S. Li, "Multi-Domain Federation Utilizing Software Defined 
Networking—A Review," IEEE Access, vol. 11, pp. 19202-19227, 2023. 

M. AbdulRaheem et al., "Machine learning assisted snort and zeek in detecting DDoS attacks in 
software-defined networking," International Journal of Information Technology, vol. 16, no. 
3, pp. 1627-1643, 2024. 

A. M. Eldhai et al., "Improved Feature Selection and Stream Traffic Classification Based on Machine 
Learning in Software-Defined Networks," IEEE Access, 2024. 

K. T. Dinh, S. Kukliński, W. Kujawa, and M. Ulaski, "MSDN-TE: Multipath based traffic engineering 
for SDN," in Intelligent Information and Database Systems: 8th Asian Conference, ACIIDS 
2016, Da Nang, Vietnam, March 14–16, 2016, Proceedings, Part II 8, 2016: Springer, pp. 630-
639.  

K. T. Mehmood, S. Atiq, and M. M. Hussain, "Enhancing QoS of Telecom Networks through Server 
Load Management in Software-Defined Networking (SDN)," Sensors, vol. 23, no. 23, p. 9324, 
2023. 

A. H. Alhilali and A. Montazerolghaem, "Artificial intelligence based load balancing in SDN: A 
comprehensive survey," Internet of Things, vol. 22, p. 100814, 2023. 

D. Shah et al., "FAST: AI-based Network Traffic Analysis and Load Balancing Framework Underlying 
SDN Clusters," in 2024 8th International Conference on Smart Cities, Internet of Things and 
Applications (SCIoT), 2024: IEEE, pp. 82-87.  

K. Truong Dinh, S. Kukliński, T. Osiński, and J. Wytrębowicz, "Heuristic traffic engineering for SDN," 
Journal of Information and Telecommunication, vol. 4, no. 3, pp. 251-266, 2020. 

S. Ahmad, F. Jamil, A. Ali, E. Khan, M. Ibrahim, and T. K. Whangbo, "Effectively Handling Network 
Congestion and Load Balancing in Software-Defined Networking," Computers, Materials & 
Continua, vol. 70, no. 1, 2022. 

J. Gómez-delaHiz and J. Galán-Jiménez, "Improving the Traffic Engineering of SDN networks by 
using Local Multi-Agent Deep Reinforcement Learning," in NOMS 2024-2024 IEEE Network 
Operations and Management Symposium, 2024: IEEE, pp. 1-5.  

J. Xiao, X. Pan, J. Liu, J. Wang, P. Zhang, and L. Abualigah, "Load balancing strategy for SDN multi-
controller clusters based on load prediction," The Journal of Supercomputing, vol. 80, no. 4, 
pp. 5136-5162, 2024. 

Z. Ye, G. Sun, and M. Guizani, "ILBPS: An Integrated Optimization Approach Based on Adaptive Load-
Balancing and Heuristic Path Selection in SDN," IEEE Internet of Things Journal, 2023. 

H. Iesar et al., "Revolutionizing Data Center Networks: Dynamic Load Balancing via Floodlight in 
SDN Environment," in 2024 5th International Conference on Advancements in Computational 
Sciences (ICACS), 2024: IEEE, pp. 1-8.  

K. Vani and K. RamaMohanBabu, "An Intelligent Server load balancing based on Multi-criteria 
decision-making in SDN," International journal of electrical and computer engineering 
systems, vol. 14, no. 4, pp. 433-442, 2023. 

M. Karakus, "GATE-BC: Genetic Algorithm-Powered QoS-Aware Cross-Network Traffic Engineering 
in Blockchain-Enabled SDN," IEEE Access, 2024. 

L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, "Traffic engineering with segment 
routing: SDN-based architectural design and open source implementation," in 2015 Fourth 
European Workshop on Software Defined Networks, 2015: IEEE, pp. 111-112.  

S. Salsano et al., "Hybrid IP/SDN networking: open implementation and experiment management 
tools," IEEE Transactions on Network and Service Management, vol. 13, no. 1, pp. 138-153, 
2015. 

Y. Feng, "Application of hybrid genetic algorithm in large traffic scheduling in SDN architecture," 
International Journal of Wireless and Mobile Computing, vol. 24, no. 3-4, pp. 341-351, 2023. 

P. Boryło et al., "SDNRoute: Proactive routing optimization in Software Defined Networks," 
Computer Communications, 2024. 

M. Beshley, N. Kryvinska, H. Beshley, O. Panchenko, and M. Medvetskyi, "Traffic engineering and 
QoS/QoE supporting techniques for emerging service-oriented software-defined network," 
Journal of Communications and Networks, vol. 26, no. 1, pp. 99-114, 2024. 

R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and J. M. Arco, "A survey on machine 
learning techniques for routing optimization in SDN," IEEE Access, vol. 9, pp. 104582-
104611, 2021. 



Khalifa et al.                                                                                           Brief Review of Using Machine Learning for Traffic Engineering 

1756 

D. Nuñez-Agurto, W. Fuertes, L. Marrone, E. Benavides-Astudillo, and M. Vásquez-Bermúdez, 
"Traffic classification in software-defined networking by employing deep learning 
techniques: a systematic literature review," in International Conference on Technologies and 
Innovation, 2023: Springer, pp. 67-80.  

V. Tong, S. Souihi, H. A. Tran, and A. Mellouk, "Machine learning based root cause analysis for SDN 
network," in 2021 IEEE Global Communications Conference (GLOBECOM), 2021: IEEE, pp. 1-
6.  

R. B. Shohani and S. A. Mostafavi, "Introducing a new linear regression based method for early DDoS 
attack detection in SDN," in 2020 6th International Conference on Web Research (ICWR), 
2020: IEEE, pp. 126-132.  

L. Zeng, "[Retracted] Analysis of the Stage Performance Effect of Environmental Protection Music 
and Dance Drama Based on Artificial Intelligence Technology," Journal of Environmental and 
Public Health, vol. 2022, no. 1, p. 2891993, 2022. 

A. I. Owusu and A. Nayak, "An intelligent traffic classification in sdn-iot: A machine learning 
approach," in 2020 IEEE International Black Sea Conference on Communications and 
Networking (BlackSeaCom), 2020: IEEE, pp. 1-6.  

M. M. Raikar, S. Meena, M. M. Mulla, N. S. Shetti, and M. Karanandi, "Data traffic classification in 
software defined networks (SDN) using supervised-learning," Procedia Computer Science, 
vol. 171, pp. 2750-2759, 2020. 

R. H. Serag, M. S. Abdalzaher, H. A. E. A. Elsayed, M. Sobh, M. Krichen, and M. M. Salim, "Machine-
Learning-Based Traffic Classification in Software-Defined Networks," Electronics, vol. 13, no. 
6, p. 1108, 2024. 

M. Kuzlu, C. Fair, and O. Guler, "Role of artificial intelligence in the Internet of Things (IoT) 
cybersecurity," Discover Internet of things, vol. 1, no. 1, p. 7, 2021. 

T. Jafarian, M. Masdari, A. Ghaffari, and K. Majidzadeh, "SADM-SDNC: security anomaly detection 
and mitigation in software-defined networking using C-support vector classification," 
Computing, vol. 103, no. 4, pp. 641-673, 2021. 

M. Kim and J. Kim, "Extending the coverage area of regional ionosphere maps using a support vector 
machine algorithm," in Annales Geophysicae, 2019, vol. 37, no. 1: Copernicus Publications 
Göttingen, Germany, pp. 77-87.  

O. Belkadi, A. Vulpe, Y. Laaziz, and S. Halunga, "ML-Based Traffic Classification in an SDN-Enabled 
Cloud Environment," Electronics, vol. 12, no. 2, p. 269, 2023. 

T. Yang, S. Vural, P. Qian, Y. Rahulan, N. Wang, and R. Tafazolli, "Achieving robust performance for 
traffic classification using ensemble learning in SDN networks," in ICC 2021-IEEE 
International Conference on Communications, 2021: IEEE, pp. 1-6.  

T. V. Phan, T. G. Nguyen, N.-N. Dao, T. T. Huong, N. H. Thanh, and T. Bauschert, "DeepGuard: Efficient 
anomaly detection in SDN with fine-grained traffic flow monitoring," IEEE Transactions on 
Network and Service Management, vol. 17, no. 3, pp. 1349-1362, 2020. 

A. Malik, R. de Fréin, M. Al-Zeyadi, and J. Andreu-Perez, "Intelligent SDN traffic classification using 
deep learning: Deep-SDN," in 2020 2nd International Conference on Computer 
Communication and the Internet (ICCCI), 2020: IEEE, pp. 184-189.  

L. Ismail and R. Buyya, "Artificial intelligence applications and self-learning 6G networks for smart 
cities digital ecosystems: Taxonomy, challenges, and future directions," Sensors, vol. 22, no. 
15, p. 5750, 2022. 

X. Ren, H. Gu, and W. Wei, "Tree-RNN: Tree structural recurrent neural network for network traffic 
classification," Expert Systems with Applications, vol. 167, p. 114363, 2021. 

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, "Network traffic classifier with 
convolutional and recurrent neural networks for Internet of Things," IEEE access, vol. 5, pp. 
18042-18050, 2017. 

M. J. Nazar, A. Alhudhaif, K. N. Qureshi, S. Iqbal, and G. Jeon, "Signature and flow statistics based 
anomaly detection system in software-defined networking for 6G internet of things 
network," International Journal of System Assurance Engineering and Management, pp. 1-11, 
2023. 

M. F. Akbaş, C. Güngör, and E. Karaarslan, "Usage of machine learning algorithms for flow based 
anomaly detection system in software defined networks," in Intelligent and Fuzzy 
Techniques: Smart and Innovative Solutions: Proceedings of the INFUS 2020 Conference, 
Istanbul, Turkey, July 21-23, 2020, 2021: Springer, pp. 1156-1163.  



Khalifa et al.                                                                                           Brief Review of Using Machine Learning for Traffic Engineering 

1757 

G. Khekare et al., "Optimizing Network Security and Performance Through the Integration of Hybrid 
GAN-RNN Models in SDN-based Access Control and Traffic Engineering," International 
Journal of Advanced Computer Science & Applications, vol. 14, no. 12, 2023. 

G. Michau and O. Fink, "Unsupervised transfer learning for anomaly detection: Application to 
complementary operating condition transfer," Knowledge-Based Systems, vol. 216, p. 
106816, 2021. 

V. A. Reddy, K. Venkatesh, and L. Srinivas, "Software defined networking based delay sensitive 
traffic engineering of critical data in internet of things," Journal of Computational and 
Theoretical Nanoscience, vol. 17, no. 1, pp. 48-53, 2020. 

M. Tian, C. Sun, and S. Wu, "An EMD and ARMA-based network traffic prediction approach in SDN-
based internet of vehicles," Wireless Networks, pp. 1-13, 2021. 

A. H. Abdi et al., "Security Control and Data Planes of SDN: A Comprehensive Review of Traditional, 
AI and MTD Approaches to Security Solutions," IEEE Access, 2024. 

T. E. Ali, A. H. Morad, and M. A. Abdala, "Traffic management inside software-defined data centre 
networking," Bulletin of Electrical Engineering and Informatics, vol. 9, no. 5, pp. 2045-2054, 
2020. 

R. Setiawan et al., "Encrypted network traffic classification and resource allocation with deep 
learning in software defined network," Wireless Personal Communications, pp. 1-17, 2022. 

A. Guo and C. Yuan, "Network intelligent control and traffic optimization based on SDN and artificial 
intelligence," Electronics, vol. 10, no. 6, p. 700, 2021. 

K. T. Selvi and R. Thamilselvan, "An intelligent traffic prediction framework for 5G network using 
SDN and fusion learning," Peer-to-Peer Networking and Applications, vol. 15, no. 1, pp. 751-
767, 2022. 

D. Adanza et al., "Enabling traffic forecasting with cloud-native SDN controller in transport 
networks," Computer Networks, vol. 250, p. 110565, 2024. 

M. A. Pramanik, M. M. Rahman, A. I. Anam, A. A. Ali, M. A. Amin, and A. M. Rahman, "Modeling traffic 
congestion in developing countries using google maps data," in Advances in Information and 
Communication: Proceedings of the 2021 Future of Information and Communication 
Conference (FICC), Volume 1, 2021: Springer, pp. 513-531.  

M. Anoushee, M. Fartash, and J. Akbari Torkestani, "An intelligent resource management method in 
SDN based fog computing using reinforcement learning," Computing, vol. 106, no. 4, pp. 
1051-1080, 2024. 

G. G. Hallur, A. Aslekar, and S. G. Prabhu, "Digital solution for entertainment: An overview of over 
the top (ott) and digital media," Digital Entertainment as Next Evolution in Service Sector: 
Emerging Digital Solutions in Reshaping Different Industries, pp. 35-53, 2023. 

A. Hirsi, L. Audah, A. Salh, N. M. Sahar, S. Ahmed, and M. A. Alhartomi, "DDoS Anomaly Detection in 
Software-Defined Networks: An Evaluation of Machine Learning Techniques for Traffic 
Classification and Prediction," in 2024 International Conference on Future Technologies for 
Smart Society (ICFTSS), 2024: IEEE, pp. 100-105.  

L. Desgeorges, J.-P. Georges, and T. Divoux, "Detection of anomalies of a non-deterministic software-
defined networking control," Computers & Security, vol. 129, p. 103228, 2023. 

M. D. Tache, O. Păscuțoiu, and E. Borcoci, "Optimization Algorithms in SDN: Routing, Load 
Balancing, and Delay Optimization," Applied Sciences, vol. 14, no. 14, p. 5967, 2024. 

K. Hwang, Cloud computing for machine learning and cognitive applications. Mit Press, 2017. 
C. Kumar, S. Marston, R. Sen, and A. Narisetty, "Greening the cloud: a load balancing mechanism to 

optimize cloud computing networks," Journal of Management Information Systems, vol. 39, 
no. 2, pp. 513-541, 2022. 

M. F. Audah, T. S. Chin, Y. Zulfadzli, C. K. Lee, and K. Rizaluddin, "Towards efficient and scalable 
machine learning-based QoS traffic classification in software-defined network," in Mobile 
Web and Intelligent Information Systems: 16th International Conference, MobiWIS 2019, 
Istanbul, Turkey, August 26–28, 2019, Proceedings 16, 2019: Springer, pp. 217-229.  

J. Xie et al., "A survey of machine learning techniques applied to software defined networking 
(SDN): Research issues and challenges," IEEE Communications Surveys & Tutorials, vol. 21, 
no. 1, pp. 393-430, 2018. 

J. Kwon, D. Jung, and H. Park, "Traffic data classification using machine learning algorithms in SDN 
networks," in 2020 International Conference on Information and Communication Technology 
Convergence (ICTC), 2020: IEEE, pp. 1031-1033.  



Khalifa et al.                                                                                           Brief Review of Using Machine Learning for Traffic Engineering 

1758 

L. Yanjun, L. Xiaobo, and Y. Osamu, "Traffic engineering framework with machine learning based 
meta-layer in software-defined networks," in 2014 4th IEEE International Conference on 
Network Infrastructure and Digital Content, 2014: IEEE, pp. 121-125.  

P. Sun, Z. Guo, J. Lan, J. Li, Y. Hu, and T. Baker, "ScaleDRL: A scalable deep reinforcement learning 
approach for traffic engineering in SDN with pinning control," Computer Networks, vol. 190, 
p. 107891, 2021. 

Z. Fan and R. Liu, "Investigation of machine learning based network traffic classification," in 2017 
International Symposium on Wireless Communication Systems (ISWCS), 2017: IEEE, pp. 1-6.  

R. Thupae, B. Isong, N. Gasela, and A. M. Abu-Mahfouz, "Machine learning techniques for traffic 
identification and classifiacation in SDWSN: A survey," in IECON 2018-44th annual 
conference of the IEEE Industrial Electronics Society, 2018: IEEE, pp. 4645-4650.  

G. Wassie, J. Ding, and Y. Wondie, "Traffic prediction in SDN for explainable QoS using deep learning 
approach," Scientific Reports, vol. 13, no. 1, p. 20607, 2023. 

S. Faezi and A. Shirmarz, "A comprehensive survey on machine learning using in software defined 
networks (SDN)," Human-Centric Intelligent Systems, vol. 3, no. 3, pp. 312-343, 2023. 

Y. Yoo, G. Yang, C. Shin, J. Lee, and C. Yoo, "Machine Learning-Based Prediction Models for Control 
Traffic in SDN Systems," IEEE Transactions on Services Computing, 2023. 

H. Padmanaban, "Machine Learning Algorithms Scaling on Large-Scale Data Infrastructure," Journal 
of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, vol. 3, no. 1, pp. 171-196, 
2024. 

M. Ye, J. Zhang, Z. Guo, and H. J. Chao, "Date: Disturbance-aware traffic engineering with 
reinforcement learning in software-defined networks," in 2021 IEEE/ACM 29th 
International Symposium on Quality of Service (IWQOS), 2021: IEEE, pp. 1-10.  

S. Troia, F. Sapienza, L. Varé, and G. Maier, "On deep reinforcement learning for traffic engineering 
in SD-WAN," IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2198-
2212, 2020. 

D.-H. Le, H.-A. Tran, S. Souihi, and A. Mellouk, "An ai-based traffic matrix prediction solution for 
software-defined network," in ICC 2021-IEEE International Conference on Communications, 
2021: IEEE, pp. 1-6.  

G. Kim, Y. Kim, and H. Lim, "Deep reinforcement learning-based routing on software-defined 
networks," IEEE Access, vol. 10, pp. 18121-18133, 2022. 

E. Vaezpour, "Deep learning-driven multi-objective dynamic switch migration in software defined 
networking (SDN)/network function virtualization (NFV)-based 5G networks," Engineering 
Applications of Artificial Intelligence, vol. 125, p. 106714, 2023. 

 

 
 


