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Wireless Sensor Networks (WSNs) are prone to various types of faults that 
compromise their reliability and performance, necessitating accurate and 
efficient fault detection methods. This paper proposes an enhanced WSN fault 
detection approach leveraging a lightweight Residual Neural Network 
(ResNet) architecture. The method begins with data preprocessing, where 
redundant information is eliminated using Chatterjee correlation to reduce 
input space complexity. Feature selection is then performed using 
Neighborhood Component Analysis (NCA) optimized by the Horse Herd 
Optimization Algorithm (HOA), ensuring the selection of the most informative 
features. To utilize the ResNet's capability of capturing spatial relationships, 
the selected 1D feature vectors are transformed into 2D images via an inverse 
zigzag scanning technique. A lightweight ResNet model is specifically 
designed to process these small 2D inputs efficiently, incorporating three 
residual layer stacks to extract hierarchical spatial patterns. The proposed 
method achieves a remarkable accuracy of 99.41% in detecting five fault 
categories: normal condition, offset faults, gain faults, stuck-at faults, and out-
of-bounds faults. Unlike traditional binary classifiers that detect faults 
separately, leading to potential conflicts, this approach performs holistic 
multiclass classification, ensuring reliability and consistency in predictions. 
Additionally, the lightweight architecture addresses the computational 
constraints of WSN environments. By integrating redundancy reduction, 
optimized feature selection, and a tailored ResNet design, this method offers 
a significant advancement in WSN fault detection, providing high accuracy, 
computational efficiency, and robust multiclass classification. 

 

INTRODUCTION   
Wireless sensor networks (WSNs) have emerged as a cornerstone of modern monitoring systems, 
enabling real-time data collection and communication across diverse environments. These networks 
play a vital role in applications ranging from environmental monitoring and industrial automation to 
healthcare and security. However, the efficient functioning of WSNs is frequently challenged by faults 
arising from hardware failures, environmental interferences, communication disruptions, or 
software anomalies. Accurate fault detection is essential to ensure data reliability, network security, 
and the longevity of these resource-constrained systems. In recent years, machine learning 
approaches have garnered significant attention as robust solutions for fault detection in WSNs. These 
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methods leverage pattern recognition and predictive capabilities to identify anomalies effectively. 
Despite their potential, existing techniques often grapple with issues such as high-dimensional data 
processing, scalability, and computational efficiency, particularly in large-scale deployments or 
diverse fault scenarios. Addressing these challenges demands innovative methods that integrate 
effective feature selection, optimized classification techniques, and resource-efficient algorithms. 

Fault detection in WSNs is a critical challenge due to resource limitations and diverse deployment 
environments. It is crucial for maintaining data quality, network security, and longevity (Zhang et al., 
2018). Machine learning approaches have emerged as promising solutions for this problem. Zidi et 
al. (2018) investigated the use of support vector machines (SVMs), demonstrating their effectiveness 
through experimental comparisons with existing methods. The SVM-based approach offered a 
lightweight decision function suitable for execution on cluster heads. In a more comprehensive study, 
Noshad et al. (2019) compared multiple classifiers, including SVM, Convolutional Neural Network, 
Stochastic Gradient Descent, Multilayer Perceptron, Random Forest (RF), and Probabilistic Neural 
Network. Their analysis, conducted on real-world datasets, evaluated the classifiers' performance 
based on detection accuracy, true positive rate, Matthews Correlation Coefficients (MCC), and F1-
score. The results indicated that the RF algorithm outperformed other classifiers in fault detection 
for WSNs. The study by Gupta et al. (2019) introduces an improved fault detection technique for 
wireless sensor networks (WSNs) called the Improved Fault Detection Crow Search Algorithm 
(IFDCSA). This algorithm addresses the critical issue of faulty data in WSNs, which can lead to system 
failures. IFDCSA, an enhanced version of the original Crow Search Algorithm, injects faults into 
datasets and then classifies them using machine learning classifiers. The researchers evaluated 
IFDCSA on three real-world datasets: Intel lab data, multihop labeled data, and SensorScope data. 
The proposed algorithm achieved an impressive average accuracy of 99.94% in fault prediction. Jan 
et al. (2021) proposed a distributed approach using autoencoders and Support Vector Machines for 
fault detection on sensors, with a Fuzzy Deep Neural Network for diagnosis at a central node. 
Gnanavel et al. (2022) compared six classifiers for detecting various fault types in WSNs, finding that 
Random Forest outperformed others in fault detection. Saeed et al. (2021) introduced an Extremely 
Randomized Trees (Extra-Trees) based method for fault diagnosis, which demonstrated robustness 
to noise and reduced bias and variance error. This approach was compared to other machine learning 
algorithms and showed superior performance in terms of accuracy, precision, and F1-score, as well 
as lower training time. ArulJothi and Venkatesan (2023) proposed a Feed-forward Autoencoder 
Neural Network (FANN) model for efficient anomaly detection, achieving improved accuracy and 
reduced energy consumption. Similarly, Atiga et al. (2021) developed a Recurrent Neural Network 
NARX model for distributed fault detection in WSNs. Karmarkar et al. (2020) introduced an 
optimized Support Vector Machine (SVM) based fault diagnosis scheme, utilizing Grey Wolf 
Optimization (GWO) for classifier optimization and a cluster-based topology for energy conservation. 
Laiou et al. (2019) proposed a decision tree-based machine learning approach for autonomous fault 
detection and diagnosis, achieving 96.46% accuracy in identifying common faults like connectivity 
loss and packet loss. To improve fault detection accuracy, Mohapatra & Khilar (2020) proposed an 
improved negative selection algorithm (INSA) combined with support vector machine (SVM) for fault 
classification. The INSA-SVM method successfully classified faults into soft permanent, soft 
intermittent, and soft transient categories. 

Recent research has focused on using deep learning techniques for fault detection in WSNs. Deep 
neural networks, particularly Recurrent Neural Networks (RNNs) and Bidirectional Long Short-Term 
Memory (Bi-LSTM) models, have shown promising results in detecting various fault types, including 
soft permanent, intermittent, and transient faults (Mazibuco et al., 2023; Gupta et al., 2021). These 
approaches outperform traditional machine learning methods in terms of fault detection accuracy, 
false alarm rate, and false-positive rate (Gupta et al., 2021). Comparative studies have evaluated the 
performance of deep learning techniques against other machine learning algorithms, such as Support 
Vector Machine (SVM) and Random Forest (RF), using metrics like Detection Accuracy and True 
Positive Rate (Azzouz et al., 2020). The application of deep learning methods in WSN fault diagnosis 
has gained significant interest in both industry and academia, addressing challenges such as sensor 
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domain knowledge requirements and the need for neighboring sensor data in distributed approaches 
(Panda et al., 2020). Swain & Khilar (2017) proposed a soft fault diagnosis model using Particle 
Swarm Optimization (PSO) for classification. Their approach involved three phases: initialization, 
fault identification using Analysis of Variance (ANOVA), and fault classification using a feed-forward 
neural network with PSO learning. Kumar et al. (2022) proposed an Improved Deep Convolutional 
Neural Network for detecting malicious nodes and an Extended K-Means algorithm with t-
Distribution based Satin Bowerbird Optimization for energy-efficient data transmission. Biswas et al. 
(2019) developed a hybrid approach using Kalman filters and Extreme Learning Machines for fault 
detection, achieving high prediction accuracy with low communication overhead. Javaid et al. (2019) 
introduced four enhanced classification techniques (EKNN, EELM, ESVM, and ERELM) to improve 
belief function-based decision fusion and fault detection in WSNs. They induced four types of faults 
and evaluated the proposed methods using detection accuracy, true positive rate, and error rate 
metrics. (Regin et al., 2018) introduce a convex hull algorithm to identify extreme points among 
neighboring nodes, maintaining message duration efficiency as the network scales. They also employ 
a Naïve Bayes classifier and a convolutional neural network (CNN) to enhance convergence 
performance and detect node faults. The study evaluates these algorithms using real-world datasets 
to identify and categorize faults. Simulation and experimental results demonstrate the feasibility and 
efficiency of the proposed methods. Notably, the CNN algorithm outperforms the convex hull 
algorithm in fault identification based on various performance metrics. Prasad & Baghel (2023) 
introduce a deep belief network-based self-detection algorithm that improves detection accuracy 
and reduces false alarm rates compared to existing approaches. Their method is scalable for large-
scale WSNs and reduces energy overhead and detection latency. Similarly, Prasad & Baghel (2022) 
present a feedforward neural network-based technique where each sensor node detects its own fault 
status using only its sensed data. This approach eliminates the need for communication with 
neighboring nodes or base stations, thereby improving energy efficiency and reducing 
communication overhead and delay. 

Sarangi & Tripathy (2023) developed an outlier detection technique using generative adversarial 
networks (GANs) with autoencoders, demonstrating improved detection accuracy and increased 
network lifetime compared to existing methods. Similarly, Arul Jothi & Venkatesan (2023) 
introduced a Feed-forward Autoencoder Neural Network (FANN) model for anomaly detection, 
which showed enhanced accuracy and reduced energy consumption while minimizing false alarms. 
These studies highlight the potential of machine learning and deep learning approaches in addressing 
the challenges of fault and anomaly detection in WSNs, particularly in improving accuracy, reducing 
energy consumption, and extending network lifetime. 

Despite these advancements, many existing approaches still face significant challenges in processing 
high-dimensional data, computational inefficiencies, and scalability across diverse fault scenarios. 
These limitations restrict their performance and applicability, especially in complex environments. 
To address these gaps, this paper introduces an innovative method for fault detection in WSNs. The 
proposed method utilizes Chatterjee Correlation, specifically designed for Sample Dimension 
Reduction, to retain critical information while removing irrelevant or less important features. This 
process identifies nonlinear relationships among samples and selects an optimized subset of data, 
enabling efficient processing. Subsequently, Neighborhood Component Analysis (NCA) is employed 
to identify the most influential features that contribute significantly to fault detection accuracy. To 
enhance NCA's performance and optimize its key hyperparameters, the Horse Herd Optimization 
Algorithm (HOA) is utilized. HOA evaluates various hyperparameter settings and their impact on 
model performance, providing optimal configurations. Additionally, Residual Neural Networks 
(ResNet), a powerful deep learning architecture, is used for classifying the optimized data. ResNet 
excels in learning complex patterns and nonlinear relationships within the data, enabling robust and 
reliable classification across diverse fault scenarios. This integration of advanced techniques ensures 
that the proposed method not only handles high-dimensional data efficiently but also significantly 
improves fault detection accuracy and scalability in complex and dynamic environments. 
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The remainder of this paper is organized as follows: Section 2 discusses the fundamental concepts 
needed for introducing the proposed method. Section 3 details the proposed methodology, including 
the integration of feature selection techniques and classification frameworks. Section 4 introduces 
the datasets used for evaluating the proposed method. Section 5 outlines the evaluation metrics 
needed for evaluating the proposed method. Section 6 presents the results and a comparative 
analysis of related methods, while Section 7 provides a comparison of the proposed method with 
other methods in the literature. Finally, Section 8 concludes the paper with potential future research 
directions. 

Basic Concepts 

This section offers a detailed explanation of the fundamental principles and key concepts required to 
understand the proposed method. 

Chatterjee correlation coefficient 

The Chatterjee correlation coefficient is a measure of association between two random variables that 
quantifies their dependence while remaining invariant to strictly monotonic transformations. Unlike 
traditional correlation measures like Pearson’s correlation, which captures linear dependence, or 
Spearman’s rank correlation, which measures monotonicity, the Chatterjee correlation coefficient is 
particularly well-suited for identifying general forms of dependence (Chatterjee et al., 2021). 

This concept was first introduced by Sourav Chatterjee in 2020 in the context of developing robust 
statistical tools to measure dependence with minimal assumptions about the underlying data 
structure. Chatterjee's work provided a novel approach by employing ranks of observations, making 
the coefficient computationally efficient and robust to outliers. To calculate the Chatterjee correlation 
coefficient, consider (X, Y) represent the input dataset, defined as (x1, y1), ..., (xn, yn), where Y is not 
constant. The computation of the Chatterjee correlation coefficient is first described for the case 
where no duplicate values exist in the dataset (Chatterjee et al., 2021). 

In this scenario, the input pairs are ordered as (x(1), y(2)), ..., (x(n), y(n)), such that x(1) ≤ x(2) ≤⋯≤ x(n). 
Since the values in X are unique, there is a single unique order that satisfies this condition. For each 
i, the parameter ri , or the rank, is defined as the count of indices j for which y(j) ≤ y(i). Under these 
conditions, the Chatterjee correlation coefficient is computed using the following Equation: 

𝜉𝜉𝑛𝑛(𝑋𝑋,𝑌𝑌) = 1 −
3� |𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖|

𝑛𝑛−1
𝑖𝑖=1
𝑛𝑛2−1

 (1) 

When duplicate values exist in X, one random ordering of the xi values, sorted in non-decreasing 
order as described above, is selected. Using the previously defined ri, the parameter li is introduced, 
representing the count of indices j such that y(j) ≥ y(i). In this case, the Chatterjee correlation coefficient 
is given by the following Equation: 

𝜉𝜉𝑛𝑛(𝑋𝑋,𝑌𝑌) = 1 −
𝑛𝑛� |𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖|

𝑛𝑛−1
𝑖𝑖=1

2� 𝑙𝑙𝑖𝑖(𝑛𝑛−𝑙𝑙𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

                   (2) 

Horse Herd Optimization Algorithm 

The Horse Herd Optimization Algorithm (HOA) is a nature-inspired meta-heuristic algorithm 
developed to address high-dimensional optimization problems. Inspired by the natural and social 
behaviors of horses, the algorithm models six key behavioral traits: grazing, hierarchy, sociability, 
imitation, defense mechanism, and roaming. These traits allow the algorithm to effectively balance 
exploration (diversifying the search for optimal solutions) and exploitation (intensifying the search 
around promising areas). In HOA, the movement of each horse is influenced by its age group, which 
determines its behavior patterns. Four age categories are defined: young (δ), adolescent (γ), adult 
(β), and old (α), with each group contributing uniquely to the optimization process (MiarNaeimi et 
al., 2021). The position of each horse in the search space is updated iteratively based on the velocity 
vector, computed as: 
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Xm
Iter,AGE = Vm

Iter,AGE + Xm
Iter−1,AGE                      (3) 

where Xm
Iter,AGE is the position, Vm

Iter,AGE, AGE is the velocity, and AGE denotes the age group. 

Velocity Calculation for Different Age Groups: The velocity vector for each horse is determined by 
combining the behavioral components. For example, the velocity for adolescent horses (γ) is 
expressed as: 

𝑉𝑉𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ = 𝐺𝐺𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝐻𝐻𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝑆𝑆𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝐼𝐼𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ  + 𝐷𝐷𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝑅𝑅𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ                                                         

(4) 

Grazing Behavior: The grazing motion models the horse's tendency to explore its surroundings and 
is calculated as: 

𝐺𝐺𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,AGE = 𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 . (𝑢𝑢 + 𝑃𝑃𝑃𝑃)[𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1]               (5)       

where 𝑢𝑢 and 𝑙𝑙 are bounds, 𝑃𝑃 is a random factor, and 𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 decays over iterations. 

Defense Mechanism: Horses avoid unfavorable regions based on their defense mechanism, 
expressed as: 

𝐷𝐷𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,AGE = −𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴[ 1

𝑞𝑞𝑞𝑞
∑ 𝑋𝑋𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1 − 𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1
𝑞𝑞𝑞𝑞
𝑗𝑗=1 ]  (6)     

where 𝑞𝑞𝑞𝑞 represents the subset of poorly performing solutions, and 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴decays over time. 

Roaming Behavior: Young horses (δ) perform random movements for exploration: 

𝑅𝑅𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,AGE = 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃 𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1                               (7) 

where 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 is a decay factor. 

Neighborhood Component Analysis 

Neighborhood Component Analysis (NCA) is a supervised learning algorithm designed for feature 
selection and dimensionality reduction in classification tasks. Unlike traditional feature selection 
methods that rely on predefined assumptions about the data, NCA is non-parametric and learns a 
feature weighting vector directly from the data by optimizing classification performance. The method 
works by identifying a subset of features that contribute most significantly to improving classification 
accuracy while minimizing redundancy and noise. By maximizing the expected leave-one-out (LOO) 
classification accuracy, NCA enhances the performance of machine learning models, reduces 
computational complexity, and mitigates the risk of overfitting. This adaptability makes NCA a 
powerful tool for preprocessing high-dimensional datasets in multi-class classification problems 
(Yang et al., 2012).   

In a dataset S = {(xi ,xj), i∈1,2,…,N} , where xi∈Rd is a d-dimensional feature vector and yi∈{1,2,…C} 
denotes the corresponding class label, NCA computes the weighted distance between two feature 
vectors xi and xj as: 

𝐷𝐷𝑤𝑤(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = ∑ 𝑤𝑤𝑘𝑘2|𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗|𝑑𝑑
𝑘𝑘=1  (8) 

where wk  represents the weight of the kth feature. These weights are learned to optimize the 
classification process. 

NCA employs a probabilistic framework for selecting reference points during LOO classification. The 
probability of selecting xj as a reference for xi is given by: 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝐷𝐷𝑤𝑤(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)�
∑ 𝑘𝑘(𝐷𝐷𝑤𝑤(𝑥𝑥𝑖𝑖,𝑥𝑥𝑙𝑙))𝑙𝑙≠𝑖𝑖

if𝑖𝑖 ≠ 𝑗𝑗                  (9) 

where k (z)=e(-z/σ) is a kernel function with σ as the kernel width. If i=j, the probability pij  is set to zero. 

The probability of correctly classifying xi  is defined as: 
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𝑝𝑝𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗                                        (10) 

where 𝑦𝑦𝑖𝑖𝑖𝑖=1 if 𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑗𝑗, and 𝑦𝑦𝑖𝑖𝑖𝑖= 0 otherwise. 

Objective Function:  To optimize feature selection, the average LOO classification accuracy across 
all samples serves as the objective function (OF). To prevent overfitting, a regularization term is 
added, resulting in the following objective function: 

𝑂𝑂𝑂𝑂(𝑤𝑤) = ∑ 𝑝𝑝𝑖𝑖 − 𝜆𝜆∑ 𝑤𝑤𝑘𝑘2𝑑𝑑
𝑘𝑘=1𝑖𝑖                   (11) 

where λ is a regularization parameter that controls the trade-off between maximizing classification 
accuracy and minimizing overfitting. The parameter λ can be fine-tuned using cross-validation to 
achieve optimal performance. 

The goal of NCA is to maximize OF(w) with respect to w, thereby learning the most effective weights 
for the features. This process ensures the selection of a subset of features that are most relevant for 
classification tasks, leading to improved accuracy and reduced computational complexity. 

Residual Neural Network 

A Residual Neural Network (ResNet) is a type of artificial neural network introduced by Kaiming He, 
Xiangyu Zhang, Shaoqing Ren, and Jian Sun in 2015 to address performance degradation and gradient 
vanishing issues in deep architectures. ResNet's key innovation is the use of residual blocks, which 
maintain information flow across layers through skip connections. These connections bypass one or 
more layers by adding the input directly to the output, enabling the network to learn residual 
functions instead of approximating the desired mapping (Nagpal, Bhinge, & Shitole, 2022; He, Zhang, 
Ren, & Sun, 2016) (Figure 1). Mathematically, this is expressed as: 

𝐻𝐻(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑥𝑥                                        (12) 

where f(x) is the transformation learned by the block and x is the input. If f(x)=0, the input is directly 
passed as the output, preventing gradient issues during backpropagation and facilitating the training 
of very deep networks. 

 
Figure 1. Single Residual block (Nagpal, Bhinge, & Shitole, 2022) 

ResNet retains traditional ANN components, such as activation layers and Batch Normalization, but 
its residual blocks differentiate it by creating shortcut paths for the input. This ensures that deeper 
networks maintain performance without redundancy or unnecessary transformations, allowing 
additional layers to enhance learning. To handle dimensional mismatches between inputs and 
outputs, ResNet uses either zero-padding to align dimensions or a 1x1 convolutional layer within 
skip connections. These strategies ensure input integrity while enabling deeper layers to learn more 
abstract features. The skip connections and residual learning mechanism in ResNet have significantly 
improved the modeling of complex functions and enabled the development of scalable deep 
architectures like ResNet-50 and ResNet-101. These models are widely used in tasks such as image 
classification and object detection, overcoming the limitations of traditional deep networks while 
enhancing efficiency and performance (Nagpal, Bhinge, & Shitole, 2022; He, Zhang, Ren, & Sun, 2016). 
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METHODOLOGY 
In this section, the proposed methodology for enahancing WSN fault detection is comprehensively 
explained. The first step in the proposed method is data preparation, where input and output data 
are reorganized for further processing. The input data includes outdoor humidity and temperature 
measurements collected from a multi-hop wireless sensor network. These measurements encompass 
various fault types, fault gain values, and fault ratios. Initially, all data are concatenated to form a 
uniform multiclass input, ensuring that the method operates comprehensively across diverse 
conditions without requiring algorithmic adjustments. This approach also mitigates potential 
conflicts that may arise when multiple classes receive similar votes from different classifiers. 

Once concatenated, the number of consecutive measurement instances is determined to enable 
effective decision-making. Unlike traditional WSN fault classifiers that typically use a small number 
of samples (Zidi, et al, 2018), the proposed method processes five consecutive instances, enabling it 
to handle more complex datasets. Given the availability of multiple sensors per observation, the 
inclusion of five successive samples significantly increases the dataset size. However, concatenating 
observations in this manner can introduce redundant information, increasing computational 
complexity and potentially biasing the method toward certain classes. 

To address this, the proposed method employs a novel sample reduction technique using Chatterjee 
correlation. This technique reduces the input space dimensionality while retaining critical 
information. Unlike Pearson correlation, Chatterjee correlation excels at detecting nonlinear 
relationships, which is crucial for capturing all relevant patterns for fault detection. The reduction 
process involves calculating the Chatterjee correlation for each pair of samples, followed by summing 
the absolute correlations for each sample with all others. A subset with the lowest overall Chatterjee 
correlation is then selected, ensuring reduced redundancy and greater variety in the retained 
information. The lower correlation values indicate higher sample diversity, enhancing the robustness 
of the method. 

The next step in the proposed method focuses on feature selection, a critical process for enhancing 
the efficiency and effectiveness of fault detection. This paper introduces a novel feature selection 
approach that combines the Horse Herd Optimization Algorithm (HOA) with Neighborhood 
Component Analysis (NCA). Feature selection is essential for reducing data dimensionality, 
improving model performance, and minimizing the risk of overfitting. NCA is a powerful feature 
selection technique, but its effectiveness heavily depends on a key parameter: the regularization 
parameter. This parameter controls the balance between preserving local and global neighborhood 
information during the feature selection process. 

To optimize the regularization parameter for NCA, the HOA optimization algorithm is employed. HOA 
iteratively evaluates different regularization parameters within its population based on the cross-
entropy loss of the trained NCA. To configure HOA for this task, a single decision variable—matching 
the number of NCA parameters—is defined, with a standard range of [0, 1] for the regularization 
parameter. Additionally, the algorithm is set to perform a maximum of 30 iterations with a 
population size of 10. These settings are carefully chosen to balance execution time and the 
evaluation of a sufficient range of regularization parameters. 

Once the optimal regularization parameter is identified, NCA is used to rank features based on their 
importance. The top 16 features are selected to form the input feature subset. This number is chosen 
to strike a balance between effective dimensionality reduction and preserving sufficient data for 
input into the ResNet model. 

After feature selection, the data format must be modified to be compatible with the ResNet network, 
which utilizes convolutional layers that apply 2D filters to input images. To leverage the full potential 
of ResNet's capabilities in capturing mutual relationships between features, the proposed method 
transforms the 1D feature vector into a structured 2D array. This transformation enables ResNet’s 
convolutional layers to identify local patterns and dependencies within the data using spatial filters 
effectively. 
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The proposed transformation employs an inverse zigzag scanning technique, ensuring that features 
are arranged spatially in a meaningful manner. First, the 16-element feature vector is expanded by 
repeating each feature 16 times, producing a 1×256 vector. This expansion ensures sufficient 
representation of each feature in the subsequent 2D arrangement. Next, the expanded 1×256 vector 
is reorganized into a 16×16 2D array using an inverse zigzag scanning pattern. This pattern 
systematically arranges the features to preserve their local adjacency, which is crucial for the 
operation of convolutional filters. 

The inverse zigzag scanning method mimics a natural traversal of adjacent data, ensuring that 
neighboring features from the 1D vector are placed in close proximity within the 2D array. This 
structured arrangement allows ResNet’s convolutional filters to explore intricate relationships 
between features, capturing all potential interactions in small, localized regions. By doing so, ResNet 
leverages its hierarchical residual blocks to learn complex patterns and dependencies effectively. 

This transformation maximizes the utility of ResNet’s convolutional operations, enhancing its ability 
to extract meaningful representations from the input data. Figure 2 illustrates the conversion process 
from a 1D feature vector to a 2D image format for use in the ResNet network. 

 
Figure 2. The proposed 1D feature vector to 2D image conversion using inverse zigzag 

scanning. The numbers in each pixel show the element numbers of the initial 1×16 vector 

The final step in the proposed method is the design of the ResNet network for accurate WSN fault 
detection. ResNet employs skip connections that address the vanishing gradient problem, enabling 
the successful training of deep networks. This depth is essential for effectively generalizing across 
various fault types, given the inherent complexity of WSN fault detection. ResNet's strength in 
capturing precise spatial relationships makes it particularly suited for analyzing the proposed 2D 
features, which utilize structural details and mutual relationships preserved through the inverse 
zigzag scanning. 

However, standard ResNet architectures like ResNet-50 and ResNet-101 are not suitable for this 
application due to their high computational demands. These variants are optimized for large inputs, 
such as 224×224 pixel images, whereas the input feature arrays in this study are significantly smaller, 
measuring just 16×16 pixels. Scaling up the input images or extracting additional features would 
result in unnecessary computational overhead. To address this challenge, a lightweight ResNet 
architecture is specifically tailored for the extracted features, enabling efficient processing of the 
small inputs while preserving essential spatial hierarchies required for accurate fault classification. 

The proposed ResNet architecture comprises three stacks of residual layers. The first stack includes 
four residual blocks, the second contains three blocks, and the third consists of two blocks, as 
illustrated in Figure 3. Each stack progressively increases the number of convolutional filters: the 
first stack uses 16 filters, the second stack uses 32 filters, and the third stack employs 64 filters. 
Additionally, a preliminary convolutional layer, batch normalization layer, and ReLU activation layer 
are introduced before the residual stacks. This initial convolutional layer, equipped with 16 filters of 
size 3×3, is designed to capture fine-grained details and enhance the overall efficiency of the network. 
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Figure 3. The structure of (a) the initial residual block in the stack and (b) the subsequent 

residual blocks in the stack 

Following the last residual block of the second stack, a global average pooling layer is added to reduce 
each feature map to a single value, effectively summarizing spatial information across the feature 
maps. The network then concludes with a fully connected layer consisting of five neurons, followed 
by a SoftMax activation layer to classify the sensor data into five distinct categories: normal condition, 
offset faults, gain faults, stuck-at faults, and out-of-bounds faults. The complete architecture of the 
designed ResNet, with 247.8k learnable parameters, is illustrated in Figure 4. 

 
Figure 4. The structure of the designed ResNet network 
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Once the network architecture is finalized, the training configuration is established. The ADAM 
optimizer is selected for training due to its adaptive learning rate, which dynamically adjusts based 
on the first and second moments of gradients. This makes ADAM particularly effective for deep 
learning tasks, offering faster and more stable convergence even with noisy gradients and large 
models. The optimizer’s gradient decay factor is set to 0.9, and its squared gradient decay factor is 
set to 0.999. 

The training process is configured with a mini-batch size of 512 and a total of 500 epochs, providing 
a balance between robust performance and hardware limitations. Additionally, the learning rate is 
managed using a piecewise decay schedule, starting with an initial rate of 0.1 and applying a decay 
factor of 0.85 every five epochs. This approach ensures gradual refinement of the learning process, 
enabling the network to converge effectively. Figure 5 illustrates the learning rate values over the 
course of training of the network. 

 
Figure 5. The values of learning rate over the course of epochs during the training procedure 

DATASET 
The dataset utilized in this study is a labeled wireless sensor network dataset designed for fault 
detection research. It comprises a collection of sensor measurements with various injected faults and 
contains 281,280 observations (vectors), each consisting of 12 attributes. 

The dataset is based on an original dataset published in 2010 by researchers at the University of 
North Carolina at Greensboro (Suthaharan et al., 2010). The original data was collected using TelosB 
motes from both single-hop and multi-hop wireless sensor networks. Measurements include 
humidity and temperature values recorded every 5 seconds over a 6-hour period. During data 
collection, an event was introduced by injecting steam from hot water to increase humidity and 
temperature. This process created two distinct classes in the dataset: normal data and anomalies. 

The prepared dataset has been used in previous fault detection research, with results published by 
Zidi et al. (2018), and we use this dataset in our study. This dataset only use the outdoor data from 
the multi-hop wireless sensor network. The prepared dataset contains 4,688 observations, each 
represented as a 12-dimensional vector. Each vector includes measurements recorded over three 
successive instances (t0, t1, t2), with each instance comprising two temperature (T1,T2) and two 
humidity (H1,H2) readings. To introduce variability, a set of faults was randomly injected into the 
data. Faults were added at different rates (50%, 40%, 30%, 20%, and 10%) and included various 
fault types, such as Offset, Gain, Stuck-at, and Out of bounds. This process resulted in 60 distinct 
datasets, each containing 4,688 observations. For each dataset, two files were prepared: one 
containing the observations and the other containing labels (y), where y = 1 indicates a normal 
observation, and y = −1 represents a fault observation (Zidi et al., 2018). 

Evaluation Metrics 

In classification tasks, evaluation metrics are essential for assessing the performance of the models. 
These metrics offer insights into how well a model predicts the class labels, enabling a comprehensive 
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evaluation of its effectiveness. Among the most commonly used metrics are accuracy, precision, 
recall, and the F1-score, each providing a distinct perspective on model performance. 

Accuracy is defined as the ratio of correctly predicted instances to the total number of instances in 
the dataset. Mathematically, it is expressed as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                     (13) 

Where: 

TP: True Positives 

TN: True Negatives 

FP: False Positives 

FN: False Negatives 

While accuracy is a straightforward and widely used metric, it can be misleading in imbalanced 
datasets. For instance, in a dataset with a significant majority class, a model predicting only the 
majority class can yield high accuracy without effectively identifying the minority class. 

Precision measures the proportion of correctly identified positive predictions relative to the total 
positive predictions. It is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑛𝑛 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                               (14) 

Precision is particularly useful in scenarios where the cost of false positives is high, such as in medical 
diagnostics or fraud detection, where an incorrect positive prediction can have severe consequences. 

Recall, also known as sensitivity or true positive rate, quantifies the proportion of actual positives 
correctly identified by the model. It is given by: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                       (15) 

High recall indicates that the model effectively captures most of the true positive instances, making 
it a critical metric in applications where missing a positive instance (false negatives) is costly, such 
as disease detection. 

The F1 score is the harmonic mean of precision and recall, offering a balanced metric when precision 
and recall are equally important. It is calculated as: 

𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2×(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                                  (16) 

The F1 score ranges between 0 and 1, with higher values indicating better performance. This metric 
is particularly beneficial in cases of imbalanced datasets, where a single metric like accuracy might 
not adequately reflect model performance. 

Simulation Results 

This section presents the simulation results for the proposed WSN fault detection method, evaluating the 
effectiveness of data preparation and the overall fault detection performance. The input data is 
partitioned into two categories: 70% for training and 30% for testing, with data randomly assigned to 
each group. The simulations are performed using MATLAB 2024a on a system featuring an Intel Core i7 
13650HX CPU, 16 GB RAM, and an NVIDIA RTX 4060 GPU with 8GB of GDDR6 memory. 
 

 

DATA PREPARATION RESULTS 
In this section, the outcomes of the data preparation phase are presented, showcasing the impact of 
redundant information removal, feature selection optimization, and the transformation of 1D feature 
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vectors into 2D arrays. These results demonstrate the efficiency of the proposed techniques in 
preparing the data for accurate WSN fault detection. 

As the first step in the data preparation process, redundant information is eliminated using 
Chatterjee correlation. This technique ensures that only the most diverse and relevant samples are 
retained, reducing the input space while preserving the essential information needed for fault 
detection. As a result, the number of samples in the dataset is reduced to 22965, minimizing 
computational overhead and mitigating the risk of bias caused by redundant data. 

The next step involves feature selection using Neighborhood Component Analysis (NCA) optimized 
with the Horse Herd Optimization Algorithm (HOA). Figure 6 shows the convergence curve of the 
HOA during the optimization of the NCA regularization parameter. The curve illustrates the iterative 
refinement of the cross-entropy loss over 30 iterations (310 evaluation points from which 300 points 
are due to having 10 horses in the population and the first 10 points are related to the initialization 
of the horses' positions), where the loss decreases significantly in the initial iterations and stabilizes 
as the algorithm converges. The final optimized regularization parameter value is 0.0013, indicating 
the optimal trade-off between preserving local and global neighborhood information during feature 
selection. This convergence result confirms the efficacy of HOA in optimizing NCA, enabling it to rank 
and select features that contribute most to fault classification accuracy. 

 
Figure 6. The HOA convergence curve for optimizing the regularization parameter of the NCA 

The final stage of data preparation transforms the selected 1D feature vectors into 2D arrays for 
ResNet input. This transformation leverages the inverse zigzag scanning technique to spatially 
arrange features in a structured 16×16 array. Figure 7 illustrates six random samples of the resulting 
2D images. These visualizations demonstrate how the spatial adjacency of features is preserved, 
enabling ResNet's convolutional filters to capture intricate local patterns and relationships. By 
converting the 1D vectors into 2D arrays, the proposed method ensures the effective utilization of 
ResNet's hierarchical structure for feature extraction and fault detection. 

 
Figure 7. six random samples of the proposed 1D features to 2D images conversion using 

inverse zigzag scanning 

WSN Fault Detection Results 

In this section, the results of the proposed WSN fault detection method are presented, including the 
training convergence curve, evaluation metrics, confusion matrix, and receiver operating 
characteristic (ROC) curve. These results demonstrate the effectiveness of the designed ResNet 
architecture in accurately classifying different fault types in wireless sensor networks. 
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Figure 8 illustrates the training convergence curve of the ResNet model, showing both the training 
and validation accuracy over the course of 17,500 iterations. The plot indicates that the model 
successfully learns to generalize, with the training and validation curves following similar trends, 
suggesting that overfitting is minimized. The convergence of both curves signifies that the network 
has adequately learned to classify the data, leading to stable performance over time. 

Table 1 presents the evaluation metrics for the WSN fault detection task, including accuracy, 
precision, recall, and F1 score. These metrics offer a comprehensive overview of the model’s 
performance, assessing both the classification accuracy and the balance between precision and recall 
for the five fault categories. The accuracy of the model is 99.4106%, while the precision, recall, and 
F1 scores for each fault category are 98.7884%, 99.3796%, and 99.0831%, respectively. These values 
highlight the model's ability to identify faults with high accuracy and to maintain a balanced 
performance across all classes. 

Next, Figure 9 presents the confusion matrix for the fault detection task. A confusion matrix is a useful 
tool for evaluating the performance of classification models by displaying the true positive, false 
positive, true negative, and false negative values for each class. It provides a detailed view of how 
well the model is distinguishing between different fault categories. The rows of the matrix represent 
the true classes, while the columns represent the predicted classes. 

Upon analyzing the confusion matrix, the model demonstrates a high rate of correct classification for 
most classes. However, some misclassifications are observed, particularly between the offset and 
stuck-at faults, which may indicate the need for further refinement in distinguishing these fault types. 
The diagonal elements of the matrix show that 99.8% of the instances in the gain faults were correctly 
classified, while 0.7% of the instances in the out-of-bound faults were misclassified as gain faults. 
This analysis helps identify areas for improvement, such as adjusting the model's sensitivity to 
certain classes or refining the training data. 

Figure 10 shows the ROC curve for the fault detection model. The ROC curve is a graphical 
representation of the trade-off between sensitivity (true positive rate) and specificity (1 - false 
positive rate) across different threshold values. A higher area under the curve (AUC) value indicates 
better model performance. The ROC curve illustrates how well the model can distinguish between 
the five fault types, with an average AUC value of 0.9994, which suggests that the model performs 
well in distinguishing between different fault categories. The curve is close to the top-left corner, 
indicating a low rate of false positives and false negatives. 

 
Figure 8. The training accuracy and loss of training and validation data during the training 

procedure 

Table 1. The evaluation metric values for WSN fault detection using the proposed method 

Accuracy Precision Recall F1-Score 
99.4106% 98.7884% 99.3796% 99.0831% 
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Figure 9. The confusion matrix of the final WSN fault detection using the proposed method 

 
Figure 10. The ROC curve of the final WSN fault detection using the proposed method 

Comparison 

The proposed method in this study is compared to two prominent approaches for fault detection in 
WSNs (Table1): one based on Support Vector Machines (Zidi et al., 2018) and the other leveraging 
decision fusion with enhanced classifiers (Javaid et al., 2019). Unlike the SVM-based approach, which 
uses a single lightweight classifier to detect anomalies, our method integrates more advanced 
optimization techniques to enhance classification performance. While the SVM-based approach 
excels in simplicity and low computational resource requirements, it may struggle with complex fault 
patterns due to its reliance on a single decision function. In contrast, our method not only achieves 
comparable efficiency but also offers higher adaptability to diverse and intricate fault scenarios by 
incorporating additional mechanisms for feature optimization and fault detection.   

When compared to the decision fusion method, which utilizes Enhanced K-Nearest Neighbor (EKNN), 
Enhanced Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and 
Enhanced Recurrent Extreme Learning Machine (ERELM), our approach demonstrates distinct 
advantages in terms of accuracy and computational efficiency. The decision fusion method, while 
effective for complex fault detection, requires significant computational resources due to the fusion 
of multiple classifiers and the processing of large volumes of data. Our method, by optimizing both 
feature selection and fault classification processes, strikes a balance between accuracy and resource 
consumption. Additionally, it simplifies implementation while achieving competitive detection rates 
against advanced techniques like ERELM, which demands more processing power. 

Moreover, the most important advantage of the proposed method is that not only obtains higher accuracy 
than other methods but also performs multiclass classification. The binary classification performed in 
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other investigated methods is done separately. When each classifier predicts between normal and one 
type of fault, conflicts can occur if multiple classes receive similar votes in different classifiers. 

Table 2. Summary of reviewed references 

References Methodology Dataset Accuracy Multiclass 
classi�ication 

Zidi et al., 
2018 

Support 
vector 
machine 

The WSN 
fault 
detection 
dataset 

Exceed 
99%  

Javaid et 
al., 2019 

Proposing 
four 
enhanced 
machine 
learning 
classi�iers 
(EKNN, 
EELM, ESVM, 
ERELM) for 
the decision 
fusion 
approach 

The WSN 
fault 
detection 
dataset 

The best 
obtained 
accuracy 
is 98.8% 

 

Proposed 
method 

Chatterjee 
correlation, 
HOA, NCA, 
ResNet 

The WSN 
fault 
detection 
dataset 

99.41%  

CONCLUSION 
In this paper, a novel approach for fault detection in wireless sensor networks (WSNs) was proposed, 
leveraging a combination of advanced techniques to achieve high accuracy and robust multiclass 
classification. The methodology includes a series of carefully designed steps, starting with data 
preprocessing, where redundant information is removed using Chatterjee correlation to reduce the 
input space and enhance computational efficiency. This step ensures that only the most informative 
features are retained, minimizing bias while maintaining a diverse representation of the input data. 

Next, a feature selection mechanism combining Neighborhood Component Analysis (NCA) and the 
Horse Herd Optimization Algorithm (HOA) is introduced. NCA ranks features based on their 
relevance to classification, and HOA optimizes its regularization parameter to achieve optimal 
feature selection. This results in a compact yet highly informative feature subset that improves model 
performance while reducing dimensionality. The selected 1D feature vectors are then transformed 
into 2D images using an inverse zigzag scanning technique. This transformation enables the 
convolutional filters of the residual neural network (ResNet) to capture spatial patterns and mutual 
relationships among features, maximizing the network’s ability to learn complex dependencies 
within the data. 

The tailored ResNet architecture is lightweight and specifically designed to process the small 16×16 
input images efficiently. It incorporates three stacks of residual layers with progressively increasing 
filter sizes, ensuring that spatial hierarchies are effectively captured. The final network is equipped 
with a global average pooling layer and a fully connected layer for fault classification, making it both 
computationally efficient and accurate. The training configuration, including the use of the ADAM 
optimizer and a piecewise learning rate schedule, ensures stable convergence and optimal 
performance. 

The experimental results demonstrate the robustness of the proposed approach, achieving an 
impressive final accuracy of 99.41% in detecting five fault categories: normal condition, offset faults, 
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gain faults, stuck-at faults, and out-of-bounds faults. This result significantly outperforms other 
existing methods, both in terms of accuracy and classification capability. Unlike most prior works, 
which rely on separate binary classifiers for each fault type, the proposed method performs 
comprehensive multiclass classification. This eliminates the potential for conflicts arising from 
multiple binary classifiers providing similar predictions for different faults, thereby enhancing the 
reliability and interpretability of the fault detection system. 

Moreover, the proposed method's lightweight ResNet architecture makes it suitable for deployment 
in real-world WSN environments with hardware constraints. By effectively addressing the challenges 
of redundancy, feature selection, and classification, the proposed approach establishes itself as a 
significant advancement in WSN fault detection. 
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