
 Pak. j. life soc. Sci. (2025), 23(1): 4438-4454 E-ISSN: 2221-7630;P-ISSN: 1727-4915
 Pakistan Journal of Life and Social Sciences

www.pjlss.edu.pk

https://doi.org/10.57239/PJLSS-2025-23.1.00351

4438

RESEARCH ARTICLE

Robust Multiclass Fault Detection in Wireless Sensor Networks Using
Feature Engineering and Residual Neural Networks
Ridha Mohammed Alfoudi1*, Mohsen Nickray2

1,2 Department of Computer Engineering and InformationTechnology, University of Qom
Qom , Iran

ARTICLE INFO ABSTRACT

Received: Nov 16, 2024

Accepted: Jan 28, 2025

Keywords

Wireless Sensor Networks
Fault Detection
Residual Neural Network
Chatterjee Correlation
Neighborhood Component
Analysis ResNet
Horse Herd Optimization
Algorithm

*Corresponding Author:

ridha.alfoudi@gmail.com

Wireless Sensor Networks (WSNs) are prone to various types of faults that
compromise their reliability and performance, necessitating accurate and
efficient fault detection methods. This paper proposes an enhanced WSN fault
detection approach leveraging a lightweight Residual Neural Network
(ResNet) architecture. The method begins with data preprocessing, where
redundant information is eliminated using Chatterjee correlation to reduce
input space complexity. Feature selection is then performed using
Neighborhood Component Analysis (NCA) optimized by the Horse Herd
Optimization Algorithm (HOA), ensuring the selection of the most informative
features. To utilize the ResNet's capability of capturing spatial relationships,
the selected 1D feature vectors are transformed into 2D images via an inverse
zigzag scanning technique. A lightweight ResNet model is specifically
designed to process these small 2D inputs efficiently, incorporating three
residual layer stacks to extract hierarchical spatial patterns. The proposed
method achieves a remarkable accuracy of 99.41% in detecting five fault
categories: normal condition, offset faults, gain faults, stuck-at faults, and out-
of-bounds faults. Unlike traditional binary classifiers that detect faults
separately, leading to potential conflicts, this approach performs holistic
multiclass classification, ensuring reliability and consistency in predictions.
Additionally, the lightweight architecture addresses the computational
constraints of WSN environments. By integrating redundancy reduction,
optimized feature selection, and a tailored ResNet design, this method offers
a significant advancement in WSN fault detection, providing high accuracy,
computational efficiency, and robust multiclass classification.

INTRODUCTION
Wireless sensor networks (WSNs) have emerged as a cornerstone of modern monitoring systems,
enabling real-time data collection and communication across diverse environments. These networks
play a vital role in applications ranging from environmental monitoring and industrial automation to
healthcare and security. However, the efficient functioning of WSNs is frequently challenged by faults
arising from hardware failures, environmental interferences, communication disruptions, or
software anomalies. Accurate fault detection is essential to ensure data reliability, network security,
and the longevity of these resource-constrained systems. In recent years, machine learning
approaches have garnered significant attention as robust solutions for fault detection in WSNs. These

http://www.pjlss.edu.pk/

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4439

methods leverage pattern recognition and predictive capabilities to identify anomalies effectively.
Despite their potential, existing techniques often grapple with issues such as high-dimensional data
processing, scalability, and computational efficiency, particularly in large-scale deployments or
diverse fault scenarios. Addressing these challenges demands innovative methods that integrate
effective feature selection, optimized classification techniques, and resource-efficient algorithms.

Fault detection in WSNs is a critical challenge due to resource limitations and diverse deployment
environments. It is crucial for maintaining data quality, network security, and longevity (Zhang et al.,
2018). Machine learning approaches have emerged as promising solutions for this problem. Zidi et
al. (2018) investigated the use of support vector machines (SVMs), demonstrating their effectiveness
through experimental comparisons with existing methods. The SVM-based approach offered a
lightweight decision function suitable for execution on cluster heads. In a more comprehensive study,
Noshad et al. (2019) compared multiple classifiers, including SVM, Convolutional Neural Network,
Stochastic Gradient Descent, Multilayer Perceptron, Random Forest (RF), and Probabilistic Neural
Network. Their analysis, conducted on real-world datasets, evaluated the classifiers' performance
based on detection accuracy, true positive rate, Matthews Correlation Coefficients (MCC), and F1-
score. The results indicated that the RF algorithm outperformed other classifiers in fault detection
for WSNs. The study by Gupta et al. (2019) introduces an improved fault detection technique for
wireless sensor networks (WSNs) called the Improved Fault Detection Crow Search Algorithm
(IFDCSA). This algorithm addresses the critical issue of faulty data in WSNs, which can lead to system
failures. IFDCSA, an enhanced version of the original Crow Search Algorithm, injects faults into
datasets and then classifies them using machine learning classifiers. The researchers evaluated
IFDCSA on three real-world datasets: Intel lab data, multihop labeled data, and SensorScope data.
The proposed algorithm achieved an impressive average accuracy of 99.94% in fault prediction. Jan
et al. (2021) proposed a distributed approach using autoencoders and Support Vector Machines for
fault detection on sensors, with a Fuzzy Deep Neural Network for diagnosis at a central node.
Gnanavel et al. (2022) compared six classifiers for detecting various fault types in WSNs, finding that
Random Forest outperformed others in fault detection. Saeed et al. (2021) introduced an Extremely
Randomized Trees (Extra-Trees) based method for fault diagnosis, which demonstrated robustness
to noise and reduced bias and variance error. This approach was compared to other machine learning
algorithms and showed superior performance in terms of accuracy, precision, and F1-score, as well
as lower training time. ArulJothi and Venkatesan (2023) proposed a Feed-forward Autoencoder
Neural Network (FANN) model for efficient anomaly detection, achieving improved accuracy and
reduced energy consumption. Similarly, Atiga et al. (2021) developed a Recurrent Neural Network
NARX model for distributed fault detection in WSNs. Karmarkar et al. (2020) introduced an
optimized Support Vector Machine (SVM) based fault diagnosis scheme, utilizing Grey Wolf
Optimization (GWO) for classifier optimization and a cluster-based topology for energy conservation.
Laiou et al. (2019) proposed a decision tree-based machine learning approach for autonomous fault
detection and diagnosis, achieving 96.46% accuracy in identifying common faults like connectivity
loss and packet loss. To improve fault detection accuracy, Mohapatra & Khilar (2020) proposed an
improved negative selection algorithm (INSA) combined with support vector machine (SVM) for fault
classification. The INSA-SVM method successfully classified faults into soft permanent, soft
intermittent, and soft transient categories.

Recent research has focused on using deep learning techniques for fault detection in WSNs. Deep
neural networks, particularly Recurrent Neural Networks (RNNs) and Bidirectional Long Short-Term
Memory (Bi-LSTM) models, have shown promising results in detecting various fault types, including
soft permanent, intermittent, and transient faults (Mazibuco et al., 2023; Gupta et al., 2021). These
approaches outperform traditional machine learning methods in terms of fault detection accuracy,
false alarm rate, and false-positive rate (Gupta et al., 2021). Comparative studies have evaluated the
performance of deep learning techniques against other machine learning algorithms, such as Support
Vector Machine (SVM) and Random Forest (RF), using metrics like Detection Accuracy and True
Positive Rate (Azzouz et al., 2020). The application of deep learning methods in WSN fault diagnosis
has gained significant interest in both industry and academia, addressing challenges such as sensor

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4440

domain knowledge requirements and the need for neighboring sensor data in distributed approaches
(Panda et al., 2020). Swain & Khilar (2017) proposed a soft fault diagnosis model using Particle
Swarm Optimization (PSO) for classification. Their approach involved three phases: initialization,
fault identification using Analysis of Variance (ANOVA), and fault classification using a feed-forward
neural network with PSO learning. Kumar et al. (2022) proposed an Improved Deep Convolutional
Neural Network for detecting malicious nodes and an Extended K-Means algorithm with t-
Distribution based Satin Bowerbird Optimization for energy-efficient data transmission. Biswas et al.
(2019) developed a hybrid approach using Kalman filters and Extreme Learning Machines for fault
detection, achieving high prediction accuracy with low communication overhead. Javaid et al. (2019)
introduced four enhanced classification techniques (EKNN, EELM, ESVM, and ERELM) to improve
belief function-based decision fusion and fault detection in WSNs. They induced four types of faults
and evaluated the proposed methods using detection accuracy, true positive rate, and error rate
metrics. (Regin et al., 2018) introduce a convex hull algorithm to identify extreme points among
neighboring nodes, maintaining message duration efficiency as the network scales. They also employ
a Naïve Bayes classifier and a convolutional neural network (CNN) to enhance convergence
performance and detect node faults. The study evaluates these algorithms using real-world datasets
to identify and categorize faults. Simulation and experimental results demonstrate the feasibility and
efficiency of the proposed methods. Notably, the CNN algorithm outperforms the convex hull
algorithm in fault identification based on various performance metrics. Prasad & Baghel (2023)
introduce a deep belief network-based self-detection algorithm that improves detection accuracy
and reduces false alarm rates compared to existing approaches. Their method is scalable for large-
scale WSNs and reduces energy overhead and detection latency. Similarly, Prasad & Baghel (2022)
present a feedforward neural network-based technique where each sensor node detects its own fault
status using only its sensed data. This approach eliminates the need for communication with
neighboring nodes or base stations, thereby improving energy efficiency and reducing
communication overhead and delay.

Sarangi & Tripathy (2023) developed an outlier detection technique using generative adversarial
networks (GANs) with autoencoders, demonstrating improved detection accuracy and increased
network lifetime compared to existing methods. Similarly, Arul Jothi & Venkatesan (2023)
introduced a Feed-forward Autoencoder Neural Network (FANN) model for anomaly detection,
which showed enhanced accuracy and reduced energy consumption while minimizing false alarms.
These studies highlight the potential of machine learning and deep learning approaches in addressing
the challenges of fault and anomaly detection in WSNs, particularly in improving accuracy, reducing
energy consumption, and extending network lifetime.

Despite these advancements, many existing approaches still face significant challenges in processing
high-dimensional data, computational inefficiencies, and scalability across diverse fault scenarios.
These limitations restrict their performance and applicability, especially in complex environments.
To address these gaps, this paper introduces an innovative method for fault detection in WSNs. The
proposed method utilizes Chatterjee Correlation, specifically designed for Sample Dimension
Reduction, to retain critical information while removing irrelevant or less important features. This
process identifies nonlinear relationships among samples and selects an optimized subset of data,
enabling efficient processing. Subsequently, Neighborhood Component Analysis (NCA) is employed
to identify the most influential features that contribute significantly to fault detection accuracy. To
enhance NCA's performance and optimize its key hyperparameters, the Horse Herd Optimization
Algorithm (HOA) is utilized. HOA evaluates various hyperparameter settings and their impact on
model performance, providing optimal configurations. Additionally, Residual Neural Networks
(ResNet), a powerful deep learning architecture, is used for classifying the optimized data. ResNet
excels in learning complex patterns and nonlinear relationships within the data, enabling robust and
reliable classification across diverse fault scenarios. This integration of advanced techniques ensures
that the proposed method not only handles high-dimensional data efficiently but also significantly
improves fault detection accuracy and scalability in complex and dynamic environments.

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4441

The remainder of this paper is organized as follows: Section 2 discusses the fundamental concepts
needed for introducing the proposed method. Section 3 details the proposed methodology, including
the integration of feature selection techniques and classification frameworks. Section 4 introduces
the datasets used for evaluating the proposed method. Section 5 outlines the evaluation metrics
needed for evaluating the proposed method. Section 6 presents the results and a comparative
analysis of related methods, while Section 7 provides a comparison of the proposed method with
other methods in the literature. Finally, Section 8 concludes the paper with potential future research
directions.

Basic Concepts

This section offers a detailed explanation of the fundamental principles and key concepts required to
understand the proposed method.

Chatterjee correlation coefficient

The Chatterjee correlation coefficient is a measure of association between two random variables that
quantifies their dependence while remaining invariant to strictly monotonic transformations. Unlike
traditional correlation measures like Pearson’s correlation, which captures linear dependence, or
Spearman’s rank correlation, which measures monotonicity, the Chatterjee correlation coefficient is
particularly well-suited for identifying general forms of dependence (Chatterjee et al., 2021).

This concept was first introduced by Sourav Chatterjee in 2020 in the context of developing robust
statistical tools to measure dependence with minimal assumptions about the underlying data
structure. Chatterjee's work provided a novel approach by employing ranks of observations, making
the coefficient computationally efficient and robust to outliers. To calculate the Chatterjee correlation
coefficient, consider (X, Y) represent the input dataset, defined as (x1, y1), ..., (xn, yn), where Y is not
constant. The computation of the Chatterjee correlation coefficient is first described for the case
where no duplicate values exist in the dataset (Chatterjee et al., 2021).

In this scenario, the input pairs are ordered as (x(1), y(2)), ..., (x(n), y(n)), such that x(1) ≤ x(2) ≤⋯≤ x(n).
Since the values in X are unique, there is a single unique order that satisfies this condition. For each
i, the parameter ri , or the rank, is defined as the count of indices j for which y(j) ≤ y(i). Under these
conditions, the Chatterjee correlation coefficient is computed using the following Equation:

𝜉𝜉𝑛𝑛(𝑋𝑋,𝑌𝑌) = 1 −
3� |𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖|

𝑛𝑛−1
𝑖𝑖=1
𝑛𝑛2−1

 (1)

When duplicate values exist in X, one random ordering of the xi values, sorted in non-decreasing
order as described above, is selected. Using the previously defined ri, the parameter li is introduced,
representing the count of indices j such that y(j) ≥ y(i). In this case, the Chatterjee correlation coefficient
is given by the following Equation:

𝜉𝜉𝑛𝑛(𝑋𝑋,𝑌𝑌) = 1 −
𝑛𝑛� |𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖|

𝑛𝑛−1
𝑖𝑖=1

2� 𝑙𝑙𝑖𝑖(𝑛𝑛−𝑙𝑙𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

 (2)

Horse Herd Optimization Algorithm

The Horse Herd Optimization Algorithm (HOA) is a nature-inspired meta-heuristic algorithm
developed to address high-dimensional optimization problems. Inspired by the natural and social
behaviors of horses, the algorithm models six key behavioral traits: grazing, hierarchy, sociability,
imitation, defense mechanism, and roaming. These traits allow the algorithm to effectively balance
exploration (diversifying the search for optimal solutions) and exploitation (intensifying the search
around promising areas). In HOA, the movement of each horse is influenced by its age group, which
determines its behavior patterns. Four age categories are defined: young (δ), adolescent (γ), adult
(β), and old (α), with each group contributing uniquely to the optimization process (MiarNaeimi et
al., 2021). The position of each horse in the search space is updated iteratively based on the velocity
vector, computed as:

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4442

Xm
Iter,AGE = Vm

Iter,AGE + Xm
Iter−1,AGE (3)

where Xm
Iter,AGE is the position, Vm

Iter,AGE, AGE is the velocity, and AGE denotes the age group.

Velocity Calculation for Different Age Groups: The velocity vector for each horse is determined by
combining the behavioral components. For example, the velocity for adolescent horses (γ) is
expressed as:

𝑉𝑉𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ = 𝐺𝐺𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝐻𝐻𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝑆𝑆𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝐼𝐼𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝐷𝐷𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ + 𝑅𝑅𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,γ

(4)

Grazing Behavior: The grazing motion models the horse's tendency to explore its surroundings and
is calculated as:

𝐺𝐺𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,AGE = 𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 . (𝑢𝑢 + 𝑃𝑃𝑃𝑃)[𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1] (5)

where 𝑢𝑢 and 𝑙𝑙 are bounds, 𝑃𝑃 is a random factor, and 𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 decays over iterations.

Defense Mechanism: Horses avoid unfavorable regions based on their defense mechanism,
expressed as:

𝐷𝐷𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,AGE = −𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴[1

𝑞𝑞𝑞𝑞
∑ 𝑋𝑋𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1 − 𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1
𝑞𝑞𝑞𝑞
𝑗𝑗=1] (6)

where 𝑞𝑞𝑞𝑞 represents the subset of poorly performing solutions, and 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴decays over time.

Roaming Behavior: Young horses (δ) perform random movements for exploration:

𝑅𝑅𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,AGE = 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃 𝑋𝑋𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−1 (7)

where 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴 is a decay factor.

Neighborhood Component Analysis

Neighborhood Component Analysis (NCA) is a supervised learning algorithm designed for feature
selection and dimensionality reduction in classification tasks. Unlike traditional feature selection
methods that rely on predefined assumptions about the data, NCA is non-parametric and learns a
feature weighting vector directly from the data by optimizing classification performance. The method
works by identifying a subset of features that contribute most significantly to improving classification
accuracy while minimizing redundancy and noise. By maximizing the expected leave-one-out (LOO)
classification accuracy, NCA enhances the performance of machine learning models, reduces
computational complexity, and mitigates the risk of overfitting. This adaptability makes NCA a
powerful tool for preprocessing high-dimensional datasets in multi-class classification problems
(Yang et al., 2012).

In a dataset S = {(xi ,xj), i∈1,2,…,N} , where xi∈Rd is a d-dimensional feature vector and yi∈{1,2,…C}
denotes the corresponding class label, NCA computes the weighted distance between two feature
vectors xi and xj as:

𝐷𝐷𝑤𝑤(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = ∑ 𝑤𝑤𝑘𝑘2|𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗|𝑑𝑑
𝑘𝑘=1 (8)

where wk represents the weight of the kth feature. These weights are learned to optimize the
classification process.

NCA employs a probabilistic framework for selecting reference points during LOO classification. The
probability of selecting xj as a reference for xi is given by:

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝐷𝐷𝑤𝑤(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)�
∑ 𝑘𝑘(𝐷𝐷𝑤𝑤(𝑥𝑥𝑖𝑖,𝑥𝑥𝑙𝑙))𝑙𝑙≠𝑖𝑖

if𝑖𝑖 ≠ 𝑗𝑗 (9)

where k (z)=e(-z/σ) is a kernel function with σ as the kernel width. If i=j, the probability pij is set to zero.

The probability of correctly classifying xi is defined as:

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4443

𝑝𝑝𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗 (10)

where 𝑦𝑦𝑖𝑖𝑖𝑖=1 if 𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑗𝑗, and 𝑦𝑦𝑖𝑖𝑖𝑖= 0 otherwise.

Objective Function: To optimize feature selection, the average LOO classification accuracy across
all samples serves as the objective function (OF). To prevent overfitting, a regularization term is
added, resulting in the following objective function:

𝑂𝑂𝑂𝑂(𝑤𝑤) = ∑ 𝑝𝑝𝑖𝑖 − 𝜆𝜆∑ 𝑤𝑤𝑘𝑘2𝑑𝑑
𝑘𝑘=1𝑖𝑖 (11)

where λ is a regularization parameter that controls the trade-off between maximizing classification
accuracy and minimizing overfitting. The parameter λ can be fine-tuned using cross-validation to
achieve optimal performance.

The goal of NCA is to maximize OF(w) with respect to w, thereby learning the most effective weights
for the features. This process ensures the selection of a subset of features that are most relevant for
classification tasks, leading to improved accuracy and reduced computational complexity.

Residual Neural Network

A Residual Neural Network (ResNet) is a type of artificial neural network introduced by Kaiming He,
Xiangyu Zhang, Shaoqing Ren, and Jian Sun in 2015 to address performance degradation and gradient
vanishing issues in deep architectures. ResNet's key innovation is the use of residual blocks, which
maintain information flow across layers through skip connections. These connections bypass one or
more layers by adding the input directly to the output, enabling the network to learn residual
functions instead of approximating the desired mapping (Nagpal, Bhinge, & Shitole, 2022; He, Zhang,
Ren, & Sun, 2016) (Figure 1). Mathematically, this is expressed as:

𝐻𝐻(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑥𝑥 (12)

where f(x) is the transformation learned by the block and x is the input. If f(x)=0, the input is directly
passed as the output, preventing gradient issues during backpropagation and facilitating the training
of very deep networks.

Figure 1. Single Residual block (Nagpal, Bhinge, & Shitole, 2022)

ResNet retains traditional ANN components, such as activation layers and Batch Normalization, but
its residual blocks differentiate it by creating shortcut paths for the input. This ensures that deeper
networks maintain performance without redundancy or unnecessary transformations, allowing
additional layers to enhance learning. To handle dimensional mismatches between inputs and
outputs, ResNet uses either zero-padding to align dimensions or a 1x1 convolutional layer within
skip connections. These strategies ensure input integrity while enabling deeper layers to learn more
abstract features. The skip connections and residual learning mechanism in ResNet have significantly
improved the modeling of complex functions and enabled the development of scalable deep
architectures like ResNet-50 and ResNet-101. These models are widely used in tasks such as image
classification and object detection, overcoming the limitations of traditional deep networks while
enhancing efficiency and performance (Nagpal, Bhinge, & Shitole, 2022; He, Zhang, Ren, & Sun, 2016).

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4444

METHODOLOGY
In this section, the proposed methodology for enahancing WSN fault detection is comprehensively
explained. The first step in the proposed method is data preparation, where input and output data
are reorganized for further processing. The input data includes outdoor humidity and temperature
measurements collected from a multi-hop wireless sensor network. These measurements encompass
various fault types, fault gain values, and fault ratios. Initially, all data are concatenated to form a
uniform multiclass input, ensuring that the method operates comprehensively across diverse
conditions without requiring algorithmic adjustments. This approach also mitigates potential
conflicts that may arise when multiple classes receive similar votes from different classifiers.

Once concatenated, the number of consecutive measurement instances is determined to enable
effective decision-making. Unlike traditional WSN fault classifiers that typically use a small number
of samples (Zidi, et al, 2018), the proposed method processes five consecutive instances, enabling it
to handle more complex datasets. Given the availability of multiple sensors per observation, the
inclusion of five successive samples significantly increases the dataset size. However, concatenating
observations in this manner can introduce redundant information, increasing computational
complexity and potentially biasing the method toward certain classes.

To address this, the proposed method employs a novel sample reduction technique using Chatterjee
correlation. This technique reduces the input space dimensionality while retaining critical
information. Unlike Pearson correlation, Chatterjee correlation excels at detecting nonlinear
relationships, which is crucial for capturing all relevant patterns for fault detection. The reduction
process involves calculating the Chatterjee correlation for each pair of samples, followed by summing
the absolute correlations for each sample with all others. A subset with the lowest overall Chatterjee
correlation is then selected, ensuring reduced redundancy and greater variety in the retained
information. The lower correlation values indicate higher sample diversity, enhancing the robustness
of the method.

The next step in the proposed method focuses on feature selection, a critical process for enhancing
the efficiency and effectiveness of fault detection. This paper introduces a novel feature selection
approach that combines the Horse Herd Optimization Algorithm (HOA) with Neighborhood
Component Analysis (NCA). Feature selection is essential for reducing data dimensionality,
improving model performance, and minimizing the risk of overfitting. NCA is a powerful feature
selection technique, but its effectiveness heavily depends on a key parameter: the regularization
parameter. This parameter controls the balance between preserving local and global neighborhood
information during the feature selection process.

To optimize the regularization parameter for NCA, the HOA optimization algorithm is employed. HOA
iteratively evaluates different regularization parameters within its population based on the cross-
entropy loss of the trained NCA. To configure HOA for this task, a single decision variable—matching
the number of NCA parameters—is defined, with a standard range of [0, 1] for the regularization
parameter. Additionally, the algorithm is set to perform a maximum of 30 iterations with a
population size of 10. These settings are carefully chosen to balance execution time and the
evaluation of a sufficient range of regularization parameters.

Once the optimal regularization parameter is identified, NCA is used to rank features based on their
importance. The top 16 features are selected to form the input feature subset. This number is chosen
to strike a balance between effective dimensionality reduction and preserving sufficient data for
input into the ResNet model.

After feature selection, the data format must be modified to be compatible with the ResNet network,
which utilizes convolutional layers that apply 2D filters to input images. To leverage the full potential
of ResNet's capabilities in capturing mutual relationships between features, the proposed method
transforms the 1D feature vector into a structured 2D array. This transformation enables ResNet’s
convolutional layers to identify local patterns and dependencies within the data using spatial filters
effectively.

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4445

The proposed transformation employs an inverse zigzag scanning technique, ensuring that features
are arranged spatially in a meaningful manner. First, the 16-element feature vector is expanded by
repeating each feature 16 times, producing a 1×256 vector. This expansion ensures sufficient
representation of each feature in the subsequent 2D arrangement. Next, the expanded 1×256 vector
is reorganized into a 16×16 2D array using an inverse zigzag scanning pattern. This pattern
systematically arranges the features to preserve their local adjacency, which is crucial for the
operation of convolutional filters.

The inverse zigzag scanning method mimics a natural traversal of adjacent data, ensuring that
neighboring features from the 1D vector are placed in close proximity within the 2D array. This
structured arrangement allows ResNet’s convolutional filters to explore intricate relationships
between features, capturing all potential interactions in small, localized regions. By doing so, ResNet
leverages its hierarchical residual blocks to learn complex patterns and dependencies effectively.

This transformation maximizes the utility of ResNet’s convolutional operations, enhancing its ability
to extract meaningful representations from the input data. Figure 2 illustrates the conversion process
from a 1D feature vector to a 2D image format for use in the ResNet network.

Figure 2. The proposed 1D feature vector to 2D image conversion using inverse zigzag

scanning. The numbers in each pixel show the element numbers of the initial 1×16 vector

The final step in the proposed method is the design of the ResNet network for accurate WSN fault
detection. ResNet employs skip connections that address the vanishing gradient problem, enabling
the successful training of deep networks. This depth is essential for effectively generalizing across
various fault types, given the inherent complexity of WSN fault detection. ResNet's strength in
capturing precise spatial relationships makes it particularly suited for analyzing the proposed 2D
features, which utilize structural details and mutual relationships preserved through the inverse
zigzag scanning.

However, standard ResNet architectures like ResNet-50 and ResNet-101 are not suitable for this
application due to their high computational demands. These variants are optimized for large inputs,
such as 224×224 pixel images, whereas the input feature arrays in this study are significantly smaller,
measuring just 16×16 pixels. Scaling up the input images or extracting additional features would
result in unnecessary computational overhead. To address this challenge, a lightweight ResNet
architecture is specifically tailored for the extracted features, enabling efficient processing of the
small inputs while preserving essential spatial hierarchies required for accurate fault classification.

The proposed ResNet architecture comprises three stacks of residual layers. The first stack includes
four residual blocks, the second contains three blocks, and the third consists of two blocks, as
illustrated in Figure 3. Each stack progressively increases the number of convolutional filters: the
first stack uses 16 filters, the second stack uses 32 filters, and the third stack employs 64 filters.
Additionally, a preliminary convolutional layer, batch normalization layer, and ReLU activation layer
are introduced before the residual stacks. This initial convolutional layer, equipped with 16 filters of
size 3×3, is designed to capture fine-grained details and enhance the overall efficiency of the network.

1 2 6 7 15 16 12 13 13 14 2 3 11 12 8 9

3 5 8 14 1 11 14 12 15 1 4 10 13 7 10 7

4 9 13 2 10 15 11 16 16 5 9 14 6 11 6 8

10 12 3 9 16 10 1 15 6 8 15 5 12 5 9 2

11 4 8 1 9 2 14 7 7 16 4 13 4 10 1 3

5 7 2 8 3 13 8 6 1 3 14 3 11 16 4 9

6 3 7 4 12 9 5 2 2 15 2 12 15 5 8 10

4 6 5 11 10 4 3 1 16 1 13 14 6 7 11 12

5 6 10 11 3 4 16 1 16 14 13 7 6 12 11 13

7 9 12 2 5 15 2 15 15 12 8 5 13 10 14 11

8 13 1 6 14 3 14 16 11 9 4 14 9 15 10 12

14 16 7 13 4 13 1 10 10 3 15 8 16 9 13 6

15 8 12 5 12 2 9 11 2 16 7 1 8 14 5 7

9 11 6 11 3 8 12 1 1 6 2 7 15 4 8 13

10 7 10 4 7 13 16 2 5 3 6 16 3 9 12 14

8 9 5 6 14 15 3 4 4 5 1 2 10 11 15 16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4446

Figure 3. The structure of (a) the initial residual block in the stack and (b) the subsequent

residual blocks in the stack

Following the last residual block of the second stack, a global average pooling layer is added to reduce
each feature map to a single value, effectively summarizing spatial information across the feature
maps. The network then concludes with a fully connected layer consisting of five neurons, followed
by a SoftMax activation layer to classify the sensor data into five distinct categories: normal condition,
offset faults, gain faults, stuck-at faults, and out-of-bounds faults. The complete architecture of the
designed ResNet, with 247.8k learnable parameters, is illustrated in Figure 4.

Figure 4. The structure of the designed ResNet network

Convolutional
layer

Batch
Normalization

ReLU

Convolutional
layer

Batch
Normalization

ReLU

Convolutional
layer

Batch
Normalization

ReLU

Addition Layer

Convolutional
layer

Batch
Normalization

Convolutional
layer

Batch
Normalization

ReLU

Convolutional
layer

Batch
Normalization

ReLU

Convolutional
layer

Batch
Normalization

ReLU

Addition Layer

(a) (b)

inputconv1bn1
relu1
maxpool1stack1_block1_conv1

stack1_block1_bn1
stack1_block1_relu1
stack1_block1_conv2
stack1_block1_bn2
stack1_block1_relu2
stack1_block1_conv3
stack1_block1_bn3

stack1_block1_add
stack1_block1_relu3

stack1_block1_skip_conv

stack1_block1_skip_bn

stack1_block2_conv1
stack1_block2_bn1
stack1_block2_relu1
stack1_block2_conv2
stack1_block2_bn2
stack1_block2_relu2
stack1_block2_conv3
stack1_block2_bn3

stack1_block2_add
stack1_block2_relu3

stack1_block3_conv1
stack1_block3_bn1
stack1_block3_relu1
stack1_block3_conv2
stack1_block3_bn2
stack1_block3_relu2
stack1_block3_conv3
stack1_block3_bn3

stack1_block3_add
stack1_block3_relu3

stack1_block4_conv1
stack1_block4_bn1
stack1_block4_relu1
stack1_block4_conv2
stack1_block4_bn2
stack1_block4_relu2
stack1_block4_conv3
stack1_block4_bn3

stack1_block4_add
stack1_block4_relu3

stack2_block1_conv1
stack2_block1_bn1
stack2_block1_relu1
stack2_block1_conv2
stack2_block1_bn2
stack2_block1_relu2
stack2_block1_conv3
stack2_block1_bn3

stack2_block1_add
stack2_block1_relu3

stack2_block1_skip_conv

stack2_block1_skip_bn

stack2_block2_conv1
stack2_block2_bn1
stack2_block2_relu1
stack2_block2_conv2
stack2_block2_bn2
stack2_block2_relu2
stack2_block2_conv3
stack2_block2_bn3

stack2_block2_add
stack2_block2_relu3

stack2_block3_conv1
stack2_block3_bn1
stack2_block3_relu1
stack2_block3_conv2
stack2_block3_bn2
stack2_block3_relu2
stack2_block3_conv3
stack2_block3_bn3

stack2_block3_add
stack2_block3_relu3

stack3_block1_conv1
stack3_block1_bn1
stack3_block1_relu1
stack3_block1_conv2
stack3_block1_bn2
stack3_block1_relu2
stack3_block1_conv3
stack3_block1_bn3

stack3_block1_add
stack3_block1_relu3

stack3_block1_skip_conv

stack3_block1_skip_bn

stack3_block2_conv1
stack3_block2_bn1
stack3_block2_relu1
stack3_block2_conv2
stack3_block2_bn2
stack3_block2_relu2
stack3_block2_conv3
stack3_block2_bn3

stack3_block2_add
stack3_block2_relu3
gap
fc
softmax

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4447

Once the network architecture is finalized, the training configuration is established. The ADAM
optimizer is selected for training due to its adaptive learning rate, which dynamically adjusts based
on the first and second moments of gradients. This makes ADAM particularly effective for deep
learning tasks, offering faster and more stable convergence even with noisy gradients and large
models. The optimizer’s gradient decay factor is set to 0.9, and its squared gradient decay factor is
set to 0.999.

The training process is configured with a mini-batch size of 512 and a total of 500 epochs, providing
a balance between robust performance and hardware limitations. Additionally, the learning rate is
managed using a piecewise decay schedule, starting with an initial rate of 0.1 and applying a decay
factor of 0.85 every five epochs. This approach ensures gradual refinement of the learning process,
enabling the network to converge effectively. Figure 5 illustrates the learning rate values over the
course of training of the network.

Figure 5. The values of learning rate over the course of epochs during the training procedure

DATASET
The dataset utilized in this study is a labeled wireless sensor network dataset designed for fault
detection research. It comprises a collection of sensor measurements with various injected faults and
contains 281,280 observations (vectors), each consisting of 12 attributes.

The dataset is based on an original dataset published in 2010 by researchers at the University of
North Carolina at Greensboro (Suthaharan et al., 2010). The original data was collected using TelosB
motes from both single-hop and multi-hop wireless sensor networks. Measurements include
humidity and temperature values recorded every 5 seconds over a 6-hour period. During data
collection, an event was introduced by injecting steam from hot water to increase humidity and
temperature. This process created two distinct classes in the dataset: normal data and anomalies.

The prepared dataset has been used in previous fault detection research, with results published by
Zidi et al. (2018), and we use this dataset in our study. This dataset only use the outdoor data from
the multi-hop wireless sensor network. The prepared dataset contains 4,688 observations, each
represented as a 12-dimensional vector. Each vector includes measurements recorded over three
successive instances (t0, t1, t2), with each instance comprising two temperature (T1,T2) and two
humidity (H1,H2) readings. To introduce variability, a set of faults was randomly injected into the
data. Faults were added at different rates (50%, 40%, 30%, 20%, and 10%) and included various
fault types, such as Offset, Gain, Stuck-at, and Out of bounds. This process resulted in 60 distinct
datasets, each containing 4,688 observations. For each dataset, two files were prepared: one
containing the observations and the other containing labels (y), where y = 1 indicates a normal
observation, and y = −1 represents a fault observation (Zidi et al., 2018).

Evaluation Metrics

In classification tasks, evaluation metrics are essential for assessing the performance of the models.
These metrics offer insights into how well a model predicts the class labels, enabling a comprehensive

0 50 100 150 200 250 300 350 400 450 500

Epoch number

0

0.02

0.04

0.06

0.08

0.1

0.12

Le
ar

ni
ng

 ra
te

 v
al

ue

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4448

evaluation of its effectiveness. Among the most commonly used metrics are accuracy, precision,
recall, and the F1-score, each providing a distinct perspective on model performance.

Accuracy is defined as the ratio of correctly predicted instances to the total number of instances in
the dataset. Mathematically, it is expressed as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 (13)

Where:

TP: True Positives

TN: True Negatives

FP: False Positives

FN: False Negatives

While accuracy is a straightforward and widely used metric, it can be misleading in imbalanced
datasets. For instance, in a dataset with a significant majority class, a model predicting only the
majority class can yield high accuracy without effectively identifying the minority class.

Precision measures the proportion of correctly identified positive predictions relative to the total
positive predictions. It is defined as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (14)

Precision is particularly useful in scenarios where the cost of false positives is high, such as in medical
diagnostics or fraud detection, where an incorrect positive prediction can have severe consequences.

Recall, also known as sensitivity or true positive rate, quantifies the proportion of actual positives
correctly identified by the model. It is given by:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (15)

High recall indicates that the model effectively captures most of the true positive instances, making
it a critical metric in applications where missing a positive instance (false negatives) is costly, such
as disease detection.

The F1 score is the harmonic mean of precision and recall, offering a balanced metric when precision
and recall are equally important. It is calculated as:

𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2×(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (16)

The F1 score ranges between 0 and 1, with higher values indicating better performance. This metric
is particularly beneficial in cases of imbalanced datasets, where a single metric like accuracy might
not adequately reflect model performance.

Simulation Results

This section presents the simulation results for the proposed WSN fault detection method, evaluating the
effectiveness of data preparation and the overall fault detection performance. The input data is
partitioned into two categories: 70% for training and 30% for testing, with data randomly assigned to
each group. The simulations are performed using MATLAB 2024a on a system featuring an Intel Core i7
13650HX CPU, 16 GB RAM, and an NVIDIA RTX 4060 GPU with 8GB of GDDR6 memory.

DATA PREPARATION RESULTS
In this section, the outcomes of the data preparation phase are presented, showcasing the impact of
redundant information removal, feature selection optimization, and the transformation of 1D feature

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4449

vectors into 2D arrays. These results demonstrate the efficiency of the proposed techniques in
preparing the data for accurate WSN fault detection.

As the first step in the data preparation process, redundant information is eliminated using
Chatterjee correlation. This technique ensures that only the most diverse and relevant samples are
retained, reducing the input space while preserving the essential information needed for fault
detection. As a result, the number of samples in the dataset is reduced to 22965, minimizing
computational overhead and mitigating the risk of bias caused by redundant data.

The next step involves feature selection using Neighborhood Component Analysis (NCA) optimized
with the Horse Herd Optimization Algorithm (HOA). Figure 6 shows the convergence curve of the
HOA during the optimization of the NCA regularization parameter. The curve illustrates the iterative
refinement of the cross-entropy loss over 30 iterations (310 evaluation points from which 300 points
are due to having 10 horses in the population and the first 10 points are related to the initialization
of the horses' positions), where the loss decreases significantly in the initial iterations and stabilizes
as the algorithm converges. The final optimized regularization parameter value is 0.0013, indicating
the optimal trade-off between preserving local and global neighborhood information during feature
selection. This convergence result confirms the efficacy of HOA in optimizing NCA, enabling it to rank
and select features that contribute most to fault classification accuracy.

Figure 6. The HOA convergence curve for optimizing the regularization parameter of the NCA

The final stage of data preparation transforms the selected 1D feature vectors into 2D arrays for
ResNet input. This transformation leverages the inverse zigzag scanning technique to spatially
arrange features in a structured 16×16 array. Figure 7 illustrates six random samples of the resulting
2D images. These visualizations demonstrate how the spatial adjacency of features is preserved,
enabling ResNet's convolutional filters to capture intricate local patterns and relationships. By
converting the 1D vectors into 2D arrays, the proposed method ensures the effective utilization of
ResNet's hierarchical structure for feature extraction and fault detection.

Figure 7. six random samples of the proposed 1D features to 2D images conversion using

inverse zigzag scanning

WSN Fault Detection Results

In this section, the results of the proposed WSN fault detection method are presented, including the
training convergence curve, evaluation metrics, confusion matrix, and receiver operating
characteristic (ROC) curve. These results demonstrate the effectiveness of the designed ResNet
architecture in accurately classifying different fault types in wireless sensor networks.

0 50 100 150 200 250 300 350

Number of function evaluations

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Be
st

 C
os

t

10
-3

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4450

Figure 8 illustrates the training convergence curve of the ResNet model, showing both the training
and validation accuracy over the course of 17,500 iterations. The plot indicates that the model
successfully learns to generalize, with the training and validation curves following similar trends,
suggesting that overfitting is minimized. The convergence of both curves signifies that the network
has adequately learned to classify the data, leading to stable performance over time.

Table 1 presents the evaluation metrics for the WSN fault detection task, including accuracy,
precision, recall, and F1 score. These metrics offer a comprehensive overview of the model’s
performance, assessing both the classification accuracy and the balance between precision and recall
for the five fault categories. The accuracy of the model is 99.4106%, while the precision, recall, and
F1 scores for each fault category are 98.7884%, 99.3796%, and 99.0831%, respectively. These values
highlight the model's ability to identify faults with high accuracy and to maintain a balanced
performance across all classes.

Next, Figure 9 presents the confusion matrix for the fault detection task. A confusion matrix is a useful
tool for evaluating the performance of classification models by displaying the true positive, false
positive, true negative, and false negative values for each class. It provides a detailed view of how
well the model is distinguishing between different fault categories. The rows of the matrix represent
the true classes, while the columns represent the predicted classes.

Upon analyzing the confusion matrix, the model demonstrates a high rate of correct classification for
most classes. However, some misclassifications are observed, particularly between the offset and
stuck-at faults, which may indicate the need for further refinement in distinguishing these fault types.
The diagonal elements of the matrix show that 99.8% of the instances in the gain faults were correctly
classified, while 0.7% of the instances in the out-of-bound faults were misclassified as gain faults.
This analysis helps identify areas for improvement, such as adjusting the model's sensitivity to
certain classes or refining the training data.

Figure 10 shows the ROC curve for the fault detection model. The ROC curve is a graphical
representation of the trade-off between sensitivity (true positive rate) and specificity (1 - false
positive rate) across different threshold values. A higher area under the curve (AUC) value indicates
better model performance. The ROC curve illustrates how well the model can distinguish between
the five fault types, with an average AUC value of 0.9994, which suggests that the model performs
well in distinguishing between different fault categories. The curve is close to the top-left corner,
indicating a low rate of false positives and false negatives.

Figure 8. The training accuracy and loss of training and validation data during the training

procedure

Table 1. The evaluation metric values for WSN fault detection using the proposed method

Accuracy Precision Recall F1-Score
99.4106% 98.7884% 99.3796% 99.0831%

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

80

100

120

Ac
cu

ra
cy

-2

0

2

4

6

Lo
ss

Training accuracy

Training loss

Validation accuracy

Validation loss

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4451

Figure 9. The confusion matrix of the final WSN fault detection using the proposed method

Figure 10. The ROC curve of the final WSN fault detection using the proposed method

Comparison

The proposed method in this study is compared to two prominent approaches for fault detection in
WSNs (Table1): one based on Support Vector Machines (Zidi et al., 2018) and the other leveraging
decision fusion with enhanced classifiers (Javaid et al., 2019). Unlike the SVM-based approach, which
uses a single lightweight classifier to detect anomalies, our method integrates more advanced
optimization techniques to enhance classification performance. While the SVM-based approach
excels in simplicity and low computational resource requirements, it may struggle with complex fault
patterns due to its reliance on a single decision function. In contrast, our method not only achieves
comparable efficiency but also offers higher adaptability to diverse and intricate fault scenarios by
incorporating additional mechanisms for feature optimization and fault detection.

When compared to the decision fusion method, which utilizes Enhanced K-Nearest Neighbor (EKNN),
Enhanced Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and
Enhanced Recurrent Extreme Learning Machine (ERELM), our approach demonstrates distinct
advantages in terms of accuracy and computational efficiency. The decision fusion method, while
effective for complex fault detection, requires significant computational resources due to the fusion
of multiple classifiers and the processing of large volumes of data. Our method, by optimizing both
feature selection and fault classification processes, strikes a balance between accuracy and resource
consumption. Additionally, it simplifies implementation while achieving competitive detection rates
against advanced techniques like ERELM, which demands more processing power.

Moreover, the most important advantage of the proposed method is that not only obtains higher accuracy
than other methods but also performs multiclass classification. The binary classification performed in

Gain Normal Offset Out of bound Stuck-at

True Class

Gain

Normal

Offset

Out of bound

Stuck-at

Pr
ed

ic
te

d
C

la
ss

Confusion Matrix of Test Data

1

6

4

1393

4

1

1 32

5

698

4

699

3509

3484

0.3%

0.1%

0.2%

1.0%

4.5%

99.7%

99.9%

99.8%

99.0%

95.5%

0.2% 0.7% 0.9% 0.7% 0.6%

99.8% 99.3% 99.1% 99.3% 99.4%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

Normal

Gain Fault

Offset Fault

Out of Bound Fault

Stuck-at Fault

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4452

other investigated methods is done separately. When each classifier predicts between normal and one
type of fault, conflicts can occur if multiple classes receive similar votes in different classifiers.

Table 2. Summary of reviewed references

References Methodology Dataset Accuracy Multiclass
classi�ication

Zidi et al.,
2018

Support
vector
machine

The WSN
fault
detection
dataset

Exceed
99% 

Javaid et
al., 2019

Proposing
four
enhanced
machine
learning
classi�iers
(EKNN,
EELM, ESVM,
ERELM) for
the decision
fusion
approach

The WSN
fault
detection
dataset

The best
obtained
accuracy
is 98.8%



Proposed
method

Chatterjee
correlation,
HOA, NCA,
ResNet

The WSN
fault
detection
dataset

99.41% 

CONCLUSION
In this paper, a novel approach for fault detection in wireless sensor networks (WSNs) was proposed,
leveraging a combination of advanced techniques to achieve high accuracy and robust multiclass
classification. The methodology includes a series of carefully designed steps, starting with data
preprocessing, where redundant information is removed using Chatterjee correlation to reduce the
input space and enhance computational efficiency. This step ensures that only the most informative
features are retained, minimizing bias while maintaining a diverse representation of the input data.

Next, a feature selection mechanism combining Neighborhood Component Analysis (NCA) and the
Horse Herd Optimization Algorithm (HOA) is introduced. NCA ranks features based on their
relevance to classification, and HOA optimizes its regularization parameter to achieve optimal
feature selection. This results in a compact yet highly informative feature subset that improves model
performance while reducing dimensionality. The selected 1D feature vectors are then transformed
into 2D images using an inverse zigzag scanning technique. This transformation enables the
convolutional filters of the residual neural network (ResNet) to capture spatial patterns and mutual
relationships among features, maximizing the network’s ability to learn complex dependencies
within the data.

The tailored ResNet architecture is lightweight and specifically designed to process the small 16×16
input images efficiently. It incorporates three stacks of residual layers with progressively increasing
filter sizes, ensuring that spatial hierarchies are effectively captured. The final network is equipped
with a global average pooling layer and a fully connected layer for fault classification, making it both
computationally efficient and accurate. The training configuration, including the use of the ADAM
optimizer and a piecewise learning rate schedule, ensures stable convergence and optimal
performance.

The experimental results demonstrate the robustness of the proposed approach, achieving an
impressive final accuracy of 99.41% in detecting five fault categories: normal condition, offset faults,

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4453

gain faults, stuck-at faults, and out-of-bounds faults. This result significantly outperforms other
existing methods, both in terms of accuracy and classification capability. Unlike most prior works,
which rely on separate binary classifiers for each fault type, the proposed method performs
comprehensive multiclass classification. This eliminates the potential for conflicts arising from
multiple binary classifiers providing similar predictions for different faults, thereby enhancing the
reliability and interpretability of the fault detection system.

Moreover, the proposed method's lightweight ResNet architecture makes it suitable for deployment
in real-world WSN environments with hardware constraints. By effectively addressing the challenges
of redundancy, feature selection, and classification, the proposed approach establishes itself as a
significant advancement in WSN fault detection.

REFERENCES
Arul, J. S., & Venkatesan, R. (2023). A deep learning approach for efficient anomaly detection in

WSNS. International Journal of Computers, Communications and Control, 18(1).
Atiga, J., Hamdi, M., Ejbali, R., & Zaied, M. (2021). Recurrent neural network NARX for distributed fault

detection in wireless sensor networks. International Journal of Sensor Networks, 37(2), 100-
111.

Azzouz, I., Boussaid, B., Zouinkhi, A., & Abdelkrim, M. N. (2020, December). Multi-faults classification
in WSN: A deep learning approach. In 2020 20th International Conference on Sciences and
Techniques of Automatic Control and Computer Engineering (STA) (pp. 343-348). IEEE.

Biswas, P., Charitha, R., Gavel, S., & Raghuvanshi, A. S. (2019, April). Fault detection using hybrid of
KF-ELM for wireless sensor networks. In 2019 3rd international conference on trends in
electronics and informatics (ICOEI) (pp. 746-750). IEEE.

Chatterjee, S. (2021). A new coefficient of correlation. Journal of the American Statistical
Association, 116(536), 2009-2022.

Gnanavel, S., Sreekrishna, M., Mani, V., Kumaran, G., Amshavalli, R.S., Alharbi, S., Maashi, M.S., Khalaf,
O.I., Abdulsahib, G.M., Alghamdi, A.D., & Aldhyani, T.H. (2022). Analysis of Fault Classifiers to
Detect the Faults and Node Failures in a Wireless Sensor Network. Electronics.

Gupta, S., Kaur, G., & Chanak, P. (2021, November). A deep bi-LSTM based fault detection algorithm
for WSNs. In 2021 IEEE Bombay Section Signature Conference (IBSSC) (pp. 1-5). IEEE.

Gupta, D., Sundaram, S., Rodrigues, J. J., & Khanna, A. (2023). An improved fault detection crow search
algorithm for wireless sensor network. International Journal of Communication
Systems, 36(12), e4136.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Jan, S. U., Lee, Y. D., & Koo, I. S. (2021). A distributed sensor-fault detection and diagnosis framework
using machine learning. Information Sciences, 547, 777-796.

Javaid, A., Javaid, N., Wadud, Z., Saba, T., Sheta, O. E., Saleem, M. Q., & Alzahrani, M. E. (2019). Machine
learning algorithms and fault detection for improved belief function based decision fusion in
wireless sensor networks. Sensors, 19(6), 1334.

Karmarkar, A., Chanak, P., & Kumar, N. (2020, February). An optimized svm based fault diagnosis
scheme for wireless sensor networks. In 2020 IEEE International Students' Conference on
Electrical, Electronics and Computer Science (SCEECS) (pp. 1-7). IEEE.

Kumar, M., Mukherjee, P., Verma, K., Verma, S., & Rawat, D. B. (2021). Improved deep convolutional
neural network based malicious node detection and energy-efficient data transmission in
wireless sensor networks. IEEE Transactions on Network Science and Engineering, 9(5), 3272-
3281.

Laiou, A., Malliou, C. M., Lenas, S. A., & Tsaoussidis, V. (2019). Autonomous Fault Detection and
Diagnosis in Wireless Sensor Networks Using Decision Trees. J. Commun., 14(7), 544-552.

Mazibuco, V. A., Nhung, N. P., & Linh, N. T. (2023). Fault detection in wireless sensor networks with
deep neural networks. Journal of Military Science and Technology,(CSCE7), 27-36.

Alfoudi et al. Robust Multiclass Fault Detection in Wireless Sensor Networks

4454

MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-
inspired algorithm for high-dimensional optimization problems. Knowledge-Based
Systems, 213, 106711.

Mohapatra, S., & Khilar, P. M. (2020). Fault diagnosis in wireless sensor network using negative
selection algorithm and support vector machine. Computational Intelligence, 36(3), 1374-
1393.

Nagpal, P., Bhinge, S. A., & Shitole, A. (2022, December). A comparative analysis of ResNet
architectures. 2022 International Conference on Smart Generation Computing, Communication
and Networking (SMART GENCON) (pp. 1-8). IEEE.

Noshad, Z., Javaid, N., Saba, T., Wadud, Z., Saleem, M. Q., Alzahrani, M. E., & Sheta, O. E. (2019). Fault
detection in wireless sensor networks through the random forest classifier. Sensors, 19(7),
1568.

Panda, M., Gouda, B. S., & Panigrahi, T. (2020). Fault diagnosis in wireless sensor networks using a
neural network constructed by deep learning technique. In Nature Inspired Computing for
Wireless Sensor Networks (pp. 77-101). Singapore: Springer Singapore.

Prasad, R., & Baghel, R. K. (2023). Self-detection based fault diagnosis for wireless sensor
networks. Ad Hoc Networks, 149, 103245. Prasad, R., & Baghel, R. K. (2023). Self-detection
based fault diagnosis for wireless sensor networks. Ad Hoc Networks, 149, 103245.

Prasad, R., & Baghel, R. K. (2021). A novel fault diagnosis technique for wireless sensor network using
feedforward neural network. IEEE Sensors Letters, 6(1), 1-4.

Regin, R., Rajest, S., & Singh, B. (2021). Fault detection in wireless sensor network based on deep
learning algorithms. EAI Endorsed Transactions on Scalable Information Systems, 8(32).

Sarangi, B., & Tripathy, B. (2023). Outlier detection technique for wireless sensor network using GAN
with Autoencoder to increase the network lifetime. International Journal of Computer
Network and Information Security, 14(1), 26.

Swain, R. R., & Khilar, P. M. (2017, November). Soft fault diagnosis in wireless sensor networks using
PSO based classification. In TENCON 2017-2017 IEEE Region 10 Conference (pp. 2456-2461).
IEEE.

Saeed, U., Jan, S. U., Lee, Y. D., & Koo, I. (2021). Fault diagnosis based on extremely randomized trees
in wireless sensor networks. Reliability engineering & system safety, 205, 107284.

Yang, W., Wang, K., & Zuo, W. (2012). Neighborhood component feature selection for high-
dimensional data. J. Comput., 7(1), 161-168.

Zidi, S., Moulahi, T., & Alaya, B. (2017). Fault detection in wireless sensor networks through SVM
classifier. IEEE Sensors Journal, 18(1), 340-347.

Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., & Mukherjee, M. (2018). A Survey on Fault Diagnosis
in Wireless Sensor Networks. IEEE Access, 6, 11349-11364.

