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Water scarcity remains a pressing global issue, particularly in remote, arid 
regions. Solar stills offer a cost-effective, sustainable solution for water 
desalination, yet their efficiency is often limited. This study explores the 
integration of internal and external reflectors, an axial fan, and an air-cooled 
passive condenser into a conventional single-slope solar still. Experimental 
results demonstrate significant performance enhancements, with up to a 
135.5% increase in water yield, showcasing the potential of these 
modifications to optimize solar still efficiency. 
 

INTRODUCTION 

A lack of accessible water resources is a significant issue globally, particularly for those living in arid 
and semi-arid zones. Factors such as climate change, population growth, and the unsustainable use 
of water resources further aggravate the situation. This challenge is particularly severe in remote 
areas, where limited infrastructure and resources hinder access to clean and safe water. As access to 
potable water is a fundamental human necessity, the demand for practical, sustainable solutions is 
more critical than ever (Pandey and Naresh 2024, Bakhtierkhalzi et al. 2024).  In addressing this 
crisis, solar desalination has emerged as a promising technology. By harnessing solar energy to 
convert saline or brackish water into freshwater, it offers a renewable and eco-friendly approach. 
Among desalination techniques, solar stills stand out for their affordability, ease of construction, and 
adaptability to resource-limited environments. These devices provide a feasible method to supply 
safe drinking water in regions with abundant sunlight but scarce water resources. [Ahmed 2016, 
Jodah et al. 2024, Mugisidi et al. 2023)] The working principle of solar stills replicate natural 
processes such as evaporation and condensation. They typically consist of a shallow basin sealed 
with insulated walls and a sloped transparent cover, often made of glass. Sunlight heats the water, 
causing evaporation. The vapor condenses on the cooler surface of the cover, and droplets flow into 
a collection trough. These systems are cost-effective, low-maintenance, and highly accessible, making 
them essential tools for alleviating water scarcity and ensuring sustainable water security in 
underserved areas. [Kumar and Ramasamy 2024, Jeyaraj et al. 2024, Hossain 2024, Ibrahim and 
Ahmed 2021). The main drawback of solar stills is their limited productivity. On average, they 
produce only 2-3 liters of drinkable water daily, with an efficiency hovering around 30%. These 
performance metrics are influenced by the solar still's design and the geographic conditions in which 
it operates (El-Sebaey  et al. 2023, Hammoodi et al. 2023). The low water output and limited 
efficiency of solar stills are major factors restricting their widespread adoption and commercial 
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appeal. Their inability to produce sufficient quantities of potable water makes them less practical for 
large-scale applications or competitive in broader markets. (Davra et al. 2024, Katekar and 
Deshmukh 2022). To address these challenges and improve solar still performance, researchers are 
exploring various design innovations, modifications, and configurations. The focus is on optimizing 
evaporation processes to significantly boost freshwater production and enhance the efficiency of the 
system (Diarra et al. 2024, Bait 2024, Rajasekaran and Kulandiavelu 2024). Recent advancements 
focus on incorporating additional features, such as reflectors, fans, and condensers, to improve 
evaporation and condensation processes. These modifications aim to enhance solar energy 
absorption, thermal efficiency, and overall water yield, making solar stills more viable for widespread 
use (El Hafid and  Abderafi 2024, 17-18]. 

Elamy et al. 2024, investigated methods to enhance the efficiency of a Coiled Solar Still by 
incorporating a fan, reflectors, and a condenser. The study revealed that adding a fan improved 
airflow and evaporation rates, leading to a 68% productivity boost. By combining internal reflectors, 
a heating coil, and a Vertical Wick Solar Still, distillate output increased by 209%. The integration of 
a condenser further enhanced performance, achieving a remarkable 269% increase compared to a 
traditional solar still. Monowe et al. 2021, introduced an innovative design for a portable thermal-
electrical solar still equipped with an external reflective booster and an external condenser. This 
design focuses on minimizing latent heat loss by channeling it into the condenser, which can either 
preheat saline water for household use or sustain the still's operation during nighttime. Findings 
indicate that utilizing preheated water for domestic applications enhances efficiency to 77%, while 
employing it for nighttime operation further elevates efficiency to 85%. Ahmed, 2012, conducted a 
study featuring an innovative approach where three identical conventional solar stills were designed, 
constructed, and tested in Bahrain's environmental conditions, incorporating external cylindrical air-
cooled passive condensers. The results showed a 35.8% increase in distilled water production for the 
enhanced solar still. Elamy et al 2024, conducted a study utilizing a solar concentrator, phase-change 
materials with nanomaterials, and a fan linked to an external condenser. This setup achieved a 300% 
production increase compared to conventional solar stills. Vapor drawn by the fan passed through a 
copper coil in the feed tank, preheating water and lowering glass temperature, enhancing 
condensation and achieving 72.4% efficiency. Hadj-Taieb et al 2024, used external reflectors, a vapor 
extraction fan, a water-cooled condenser, and sand beds as thermal storage to experimentally 
enhance the performance of hemispherical solar stills. Their results showed a 154% increase in 
production rate. Ibrahim and Ahmed 2018 examined the impact of incorporating a passive built-in 
condenser to a conventional solar still, revealing a 38.2% enhancement in production rate. 

This study enhances conventional solar still efficiency by integrating an axial fan, passive air-cooled 
external condenser, and internal/external reflectors into a conventional basin-type design. The fan 
improves air circulation, the condenser enhances vapor condensation, and reflectors maximize solar 
radiation capture. These modifications aim to optimize heat transfer, increase condensation rates, 
and substantially boost freshwater output, addressing key challenges in solar distillation technology. 

EXPERIMENTAL SETUP AND METHODOLOGY 

A single-slope solar still was designed and fabricated with 1.4 mm thick galvanized steel, offering a 
net basin area of 1 square meter. Black epoxy paint was applied to the inner surfaces of the steel 
basin and side walls to improve solar energy absorption. The metal solar still was surrounded by a 
slightly larger wooden frame, with a 60 mm gap between them filled with glass wool to minimize 
heat loss. A 3 mm thick glass cover was fixed at a 30º angle to the horizontal and securely sealed to 
prevent any vapor leakage from the solar still. Condensed water was directed into an L-shaped 
channel positioned at the base of the cover, enhancing both solar capture and condensation 
efficiency. The back of the solar still was designed with two circular openings, each 10 cm in diameter 
as can be seen in Figure 1.  An axial fan was installed in the lower opening to facilitate the circulation 
of vapor.  An external air-cooled condenser with a cuboid design was fabricated using 1.4 mm thick 
galvanized steel. It measured 40 x 40 cm at the base with a height of 60 cm, providing a total surface 
area of 1.28 m² as can be seen in figure 2. The condenser was attached to the still using short plastic 
pipes fitted through the circular openings and featured a half-inch valve at its base for collecting and 
draining condensed water.   
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Figure 1: Figure solar still structure 
 

 
 

Figure 2: External passive condenser 

The initial experiments were carried out with only the solar still in operation, with the two openings 
completely sealed. This setup replicated a standard single-slope solar still, serving as a baseline for 
comparison against other configurations incorporating modified features. In the second set of 
experiments, the connection between the solar still chamber and the condenser was opened, allowing 
vapor to move naturally to the condenser without the use of the axial fan. For the third set, the axial 
fan was activated, actively driving the vapor flow between the solar still chamber and the air-cooled 
condenser. To examine the impact of internal reflectors on solar still performance, mirror pieces 
were installed along the interior walls to serve as reflectors as dispatched in Fig. 3. The fourth set of 



Ahmed, H. M.                                                                                                                                                      Maximizing Solar Still Efficiency 

7303 

experiments was conducted with the solar still operating and the two openings sealed, focusing solely 
on the effect of these internal mirrors. 

 
 

Figure 3: Placement of interior mirror reflectors 

To study the impact of using external mirrors as reflectors, a 1.0 m x 0.75 m mirror was positioned 
at a right angle to the upper edge of the solar still, functioning as an external reflector, as illustrated 
in Figure 5. The fifth experimental setup was then carried out, utilizing both internal and external 
mirror reflectors exclusively. 

 
 

Figure 4: Placement of external mirror reflector 
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A sixth set of experiments was performed, integrating all the enhancements: the axial fan, the 
external condenser, and both internal and external reflectors. This setup aimed to assess the 
combined impact of these modifications on the overall performance of the system.  The solar still was 
installed in the university yard and oriented towards the south. The water level inside the still was 
carefully maintained at a consistent depth of 1 cm. Experimental observations were conducted 
between 7:00 am and 6:00 pm, with hourly data collection. Recorded parameters included 
temperatures of the basin, basin water, vapor inside the still chamber, interior and exterior glass 
surfaces, inner and outer surfaces of the condenser, and the condenser interior. Additionally, ambient 
air temperature, solar radiation intensity, and wind speed were measured. The water level in the still 
was consistently maintained at a depth of 1 cm. 

RESULTS AND DISCUSSIONS 

Outdoor experiments were performed to assess the impact of incorporating design improvements 
into a conventional solar still. These improvements include an external air-cooled passive condenser, 
an internal fan for vapor circulation between the still chamber and condenser, and internal and 
external mirror reflectors. 

The first set, with the two circular openings (one intended for fan installation) blocked, allowed the 
solar still to function as a typical conventional single-slope solar still. The water condensate was 
collected only through runoff from the inner surface of the glass cover. This data set served as a 
comparison with the other sets that incorporated additional design features. For the second 
experimental setup, the two circular openings were left unsealed, with the fan kept inactive, enabling 
natural vapor circulation into the condenser without forced airflow. This configuration was designed 
to evaluate the effect of using only the external condenser. A performance comparison between the 
conventional solar still and the one fitted solely with an external condenser showed a 29.09% 
increase in overall yield. Figure 7a displays the hourly performance comparison, while Figure 7b 
highlights the daily results. Of the total condensate, 73% was collected from the glass cover, and the 
remaining 27% was obtained from the condenser. The improvement in the condensation process is 
realized by integrating an external air-cooled passive condenser, which adds additional surface area 
for condensation. Furthermore, the metal construction of the condenser, with its higher thermal 
conductivity compared to glass cover, effectively boosts condensation efficiency. Consequently, the 
overall yield and performance of the solar are improved. 

 

Figure 6a: Hourly performance: conventional vs. condenser-enhanced solar still 
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Figure 6b: Daily performance: conventional vs. condenser-enhanced solar still 

In the third experimental setup, the internal fan was activated to actively circulate vapor between 
the solar still chamber and the condenser's internal space, enhancing vapor movement and system 
efficiency. The operation of the fan significantly boosted airflow and heat exchange, resulting in a 
70.65% increase in water yield compared to the conventional solar still without fan assistance. This 
performance improvement is illustrated in Figure 7a (hourly data) and Figure 7b (cumulative daily 
results). The fan’s role in enabling forced convection led to more efficient condensation and enhanced 
overall output. Of the total condensate, 63.9% was collected from the glass cover, while 36.1% was 
captured by the condenser. 

 

Figure 7a: Hourly performance: conventional vs. condenser and fan-enhanced solar still 

 

Figure 7b: Daily performance: conventional vs. condenser and fan-enhanced solar still 

The inclusion of internal and external mirror reflectors significantly increased the sunlight entering 
the solar still, redirecting and concentrating more solar rays onto the water basin. This enhancement 
resulted in a remarkable 135.5% increase in water yield compared to the conventional solar still. The 
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improvement in performance is clearly depicted in Figure 8a (hourly data) and Figure 8b (cumulative 
daily results). Internal reflectors are used to intensify solar radiation by directing sunlight onto the 
water surface, minimizing energy loss from the walls. This concentrated reflection enhances energy 
absorption by the water, improving evaporation and condensation efficiency. At the same time, 
external reflectors gather additional sunlight and direct it into the solar still, increasing the overall 
solar energy input.  

 

Figure 8a: Hourly performance: conventional vs. condenser, fan and reflector-enhanced solar still 

 

Figure 8b: Daily performance: conventional vs. condenser, fan and reflector-enhanced solar still 

The comparison of the three design modifications with the conventional solar still is illustrated in 
Figure 9a for hourly performance and Figure 9b. These figures clearly highlight the differences in 
condensation yield between the modified configurations and the standard setup. Among the 
modifications, the integration of internal and external reflectors had the most pronounced effect, 
significantly improving solar radiation absorption and achieving the highest yield increase. The 
performance improvements across all modifications demonstrate their effectiveness in enhancing 
the solar still’s functionality and water production. The combined implementation of a condenser, 
axial fan, and internal and external reflectors further maximizes energy capture, absorption, and 
utilization, resulting in higher efficiency and output. 
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Figure 9a: Comparison of hourly performance across four experimental configurations 

 

Figure 9b: Comparison of daily performance across four experimental configurations 

CONCLUSIONS 

The study highlights the potential of integrating design improvements into a conventional solar still 
to enhance its performance. Among the tested modifications, incorporating an external air-cooled 
passive condenser increased condensation efficiency, yielding a 29.09% improvement in water 
production. Adding an internal fan further boosted vapor circulation and heat exchange, leading to a 
70.65% increase in yield. The best enhancement of 135.5% rise in water production was achieved 
with the use of internal and external mirror reflectors, which optimized solar radiation absorption 
while reducing energy losses. 

The combined application of an external condenser, axial fan, and internal and external reflectors 
emerged as an effective approach, maximizing energy efficiency and significantly improving output. 
These findings emphasize the value of systematic design upgrades in improving the functionality and 
productivity of solar stills, making them more practical for addressing water scarcity in arid regions. 
The results pave the way for further advancements in solar still technology, aiming to maximize 
freshwater production and operational efficiency. 
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