Pak. j. life soc. Sci. (2025), 23(2): 238-248

E-ISSN: 2221-7630;P-ISSN: 1727-4915

Pakistan Journal of Life and Social Sciences

3 Clarivate :

‘ . . www.pjlss.edu.pk

Web of Science P) P
https://doi.org/10.57239/PJLSS-2025-23.2.00161 _—

RESEARCH ARTICLE

Development of Methods and Tools for Implementing and Detecting
Network Steganography

Elena Revyakinal, Andrey Gazizov?

LZDon State Technical University, Rostov-on-Don, Russia

ARTICLE INFO

ABSTRACT

Received: May 3, 2025
Accepted: July 15, 2025

Keywords

Traffic Analysis
Attack

Network Packets
Information Safety

The increasing sophistication of cyber threats has led to the exploitation of
network steganography, that enables covert data transmission by
embedding hidden information within standard network protocols such as
ICMP and DNS. Traditional security mechanisms often fail to detect these
transmissions, making network steganography a significant risk for data
breaches, cyber espionage, and unauthorized communications. The
purpose of the article was to develop and implement methods and tools for
both embedding and detecting steganographic messages in network traffic;
identify hidden data transmission vulnerabilities within service network
protocols and propose efficient detection mechanisms that can help

mitigate these security risks. A custom-built client-server application was
developed using packet generation tools such as WinPcap, SharpPcap, and
Packet.NET to analyze the feasibility of embedding and detecting hidden
messages in ICMP packets. Various detection techniques, including
statistical traffic analysis, machine learning models, and visual anomaly
detection, were employed to identify deviations in network behavior. The
effectiveness of these techniques was evaluated through controlled
experiments. The study found that network steganography alters traffic
characteristics in measurable ways, making detection possible. Key
indicators of steganographic communication include increased frequency
of service packets, unusual packet size distributions, and deviations in
traffic flow patterns. The integration of machine learning models
significantly improved the accuracy of detecting steganographic
transmissions, surpassing traditional statistical methods. The findings
demonstrate that steganography detection is achievable through statistical
and Al-based analysis. Additionally, the study highlights the dual-use nature
of network steganography, emphasizing its potential for both malicious
exploitation and secure communications in defense, intelligence, and
business applications.

Active Intelligence Methods

*Corresponding Author:

elena.a.revyakina@gmail.com

INTRODUCTION

Today, in parallel with constantly developing technologies and means of data transmission, new
opportunities are emerging for attackers to circumvent traditional security methods. One of these
methods is provided by network steganography, which can be used to quietly embed the necessary
information in the data stream and then extract it.

In the modern digital age, maintaining the confidentiality and security of network communications
is a priority for many organizations and States. The fundamental requirement for data transmission
is to prevent the transmission of hidden information blocks in network traffic, which can escape
attention and not be filtered by network screens and other security systems. This requirement is
dictated by the need to exclude the possibility of unauthorized access to information or its distortion.

238

Revyakina et al. Tools for Implementing and Detecting Network Steganography

However, the implementation of this requirement faces the problem of complexity and diversity of
modern network protocols. Within these protocols, there are many potential places where data can
be hidden or modified without directly affecting the visible parameters of the packet.

To successfully detect and counter such unauthorized actions, it is important to have a good
understanding of the structure of data packets and the basic principles of network interaction. Only
a detailed knowledge of the mechanisms of communication protocols can make it possible to create
methods aimed at detecting anomalies in network traffic (Belkina, 2018).

In this regard, the task of developing methods and approaches that would be sensitive to minimal
changes in network traffic parameters resulting from attempts to modify standard packets or
interfere with the normal operation of communication protocols becomes urgent. Their timely
detection becomes an integral part of ensuring reliable and secure operation of network systems.

It should also be noted that network steganography can be used not only for malicious purposes, but
also to create hidden and secure communication channels in various areas, including defense,
intelligence, and business. This leads to the need to study not only methods for detecting information
embedded in network traffic, but also the formation of hidden steganographic communication
channels (Ganzhur et al,, 2018).

The purpose of this study is to study and implement methods and tools for implementing and
identifying network steganography. To achieve this goal, we analyzed the technology of
telecommunications systems and identified potential opportunities for data integration into
network packages. A system for data exchange via service protocols has been developed. As a result,
we proposed methods for detecting hidden data in network traffic using the developed system, as
well as traffic analysis tools, and conduct an experimental study on the detection of steganographic
packets.

MATERIALS AND METHODS

The main principle of organizing communication in computer networks is the use of standardized
protocols and models to ensure the interaction of various devices. To understand the structure and
operation of modern networks, it is extremely important to become familiar with the OSI model and
basic concepts such as protocol, packet, and encapsulation.

And encapsulation in computer networks is the process of adding a header (and possibly a
terminating block) to data at each layer of the OSI or TCP/IP model. When data is transferred from
a higher layer to a lower one (for example, from the application layer to the transport layer), headers
of the corresponding layer are added to this data. These headers contain service information that is
necessary for data processing at each stage.

After adding a header at one level, the combination of data and a new header is passed to the next
level,and the deprocess is,repeated. This process continues until the packet reaches the physical
layer and is sent over the physical communication channel (Golubev et al., 2019).

In the context of network steganography, encapsulation plays a key role, as the original packet is
"packed" into a new packet for transmission over another network. Thus, the original data becomes
the "payload" for the new packet. When this new packet reaches its destination in the tunnels, it is
decapsulated and the original packet is routed to its final destination.

To detect network steganography, various methods can be used: statistical analysis; comparison
with a sample; search for specific signatures; machine learning; visual analysis. Statistical analysis is
based on the search for changes in data packets that may cause anomalies in the statistical
characteristics of network traffic. For example, hidden data transmission may affect packet size
distribution or latency.

If you know what "clean" traffic looks like without steganography, you can compare it with current
traffic to identify unusual deviations that may indicate the use of steganography. This method is
called sample comparison. The search for specific signatures is used for those steganography
methods that have unique characteristics and can be identified using signature detection methods.
Machine learning is one of the promising methods for solving many complex problems. In relation
to the problem discussed in this paper, you can train machine models to recognize signs of

239

Revyakina et al. Tools for Implementing and Detecting Network Steganography

steganography in network traffic, using examples of known steganographic traffic. In some cases,
experts can manually perform visual analysis of network traffic for anomalies that may indicate the
presence of steganography.

Knowing about possible steganography techniques, a network administrator can try to disrupt or
modify potentially hidden data by adding noise or changing the packet structure.

The comparison process with the sample includes the following steps:

1. Collecting a reference sample. First, you need to collect or define a traffic reference sample. This
may be a sample of traffic from your own network at a time when you can definitely say that there
is no steganography, or it may be a generally accepted standard of "normal" traffic.

2. Extract characteristics. Certain characteristics are extracted from both datasets (current traffic
and reference sample), such as packet sizes, time intervals between packets, header characteristics,
and others.

3. Comparison of characteristics. These characteristics are then compared with each other. If
significant differences are found between the current traffic and the reference sample, this may
indicate the presence of steganography.

4. Limits and thresholds. Thresholds can be set to automate the process. If the difference in certain
characteristics exceeds these limits, the system can automatically warn about the possible presence
of steganography.

5. Additional tests. If suspicious deviations are detected, they can be further checked using other
detection methods to refine the results.

Using machine learning to detect network steganography is an advanced approach that can
recognize complex patterns and anomalies in network traffic that may not be visible to traditional
detection methods.

Machine learning offers a dynamic and flexible way to detect network steganography, enabling
systems to adapt to new and changing threats. However, this approach also requires deep expertise
in machine learning, high-quality training data, and thorough validation (Pavlin et al., 2014).

Visual analysis for detecting network steganography is an approach in which graphical or visualized
representations of network traffic are used to identify anomalies or unusual patterns that may
indicate the presence of steganography. This method often relies on an expert's intuitive
understanding and experience.

The first step in this process is data transformation, during which raw network traffic data is
converted to a format suitable for visualization. This may include converting time series, statistics,
or even the contents of packages into graphical images.

There are many tools and software that specialize in visualizing network traffic. These tools can
present graphics in video graphs, dim maps, scatter charts, and other visual formats. The Expert
Advisor searches for unusual or abnormal patterns in the visualized data. This may include unusual
peaks in activity, uncharacteristic distributions, or other visual features that stand out from the usual
traffic pattern. If the expert has access to samples of known steganographic traffic, they can compare
the current visualization with these samples to determine similarities.

Some visualization tools allow users to interact with data by going into more detail or changing the
visualization settings for better understanding.

Visual analysis relies on the human ability to recognize patterns, which makes this method
subjective. In addition, this approach may be less effective when analyzing large amounts of data or
when steganographic signals are thin and difficult to distinguish.

Visual analysis can be combined with other detection methods, such as statistical analysis or
machine learning, to increase the accuracy of detection.

240

Revyakina et al. Tools for Implementing and Detecting Network Steganography

Tools for Generating and Analyzing Packets

To obtain detailed information about the functioning of a particular computer network, as well as
analyze the data transmitted over it, a wide range of software utilities is used, including sniffers, port
scanners, packet generators, and other specialized programs (Peskova et al., 2017).

The practical implementation of the ICMPencapsulation method described earlier is possible using
the listed tools and is reduced to two tasks:

1. Forming a packet with the required content in the header and payload fields, which differs from
the standard packets generated by the operating system.

2. Selection of the generated packet from the general traffic flow by the receiving party and
recognition of the data placed in it.

To solve the first problem, you need to use a packet generator - a utility that allows you to set the
contents of each field in the packet and send it once or at a certain interval, and to solve the second
problem — a sniffer. Figure 1 shows an example of generating an ICMPpacket, during which the
destination IPaddress, code, ICMPmessage type, and data were manually specified, and the
remaining fields that need to be calculated were filled in automatically based on the entered values.

& Decode Editor
@4 Packet:

:60 Time:0.100000 Second

[}-© Ethernet Type II []
= - AB:F9:4B:C5:EQ:EC
Ly - 1C:1D:08:9D:43:38 |
L e (1 = [12,
2 IP - Internet Protocol
S
= 5 (21 0x0F
e 0000 0000
P 18 18
= 0x0000
S5 000,
= 0 [z
2 2
© P 1 (Tcue
= oxETTE ([24
-] 192.168.1.2
-] I 192.168.1.1
2 ICMP - Internet Control Messages Prot... 4/
=] B
e 0
P OXFTFE
= 0x0000
= 0x0001
=l 12 bytes

Figure 1. Creating a Package in ColasoftPacket Builder

As a sniffer for receiving and recognizing sent packets, you can use the Wireshark utility, which
shows detailed information about all network packets passing through the computer. The result of
its operation is shown in Figure 2. In the figure, among other packets, you can see an ICMP request
in the "Data" field, which contains the "test message"test.

M “Ethernet - o X

Ele Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
dmnie | RRE =27 855 aqaan

Apply a display fiiter .. <Ctrl/> | Bxpression |+
No. Time Source: Destination Protocol Length Info =
266 4.189970 192.168.1.2 188.237.281.121 ubP 72 53189 -+ 28975 Len=30 ™=

267 4.182349 83.97.19.19 192.168.1.2 UDP. 62 50511 > 53189 Len=20

i 269 4.351707 192.168.1.2 192.168.1.1 IcHP 56 Echo (ping) request id=ex@08@, seq=1/256, ttl=64.

270 4.352417 192.168.1.1 192.168.1.2 ICHP 68 Echo (ping) reply id-0x8008, seq-1/256, ttl-4.

272 4.375588 192.168.1.2 192.168.1.255 NS 92 Name query N8 RETRACKER<@Q> —
274 4.782465 192.168.1.2 188.242,145,149 uoP 109 53189 -+ 1 Len=67 =
275 4.732536 192.168.1.2 37.147.248.14 uop 109 53189 -+ 49653 Len=67

276 4.782608 192.168.1.2 188.191.20.172 uoe 109 53189 + 42750 Len=67 v

Frame 263: 56 bytes on wire (448 bits), 56 bytes captured (448 bits) on interface 8
Ethernet IT, Src: 1c:1d:@h:9d:43:3a (1ci1d:@b:9d:43:3a), Dst: EltexEnt_cSiediec (aB:f9:4b:c5:ediec)

v Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: @

Checksum: @xaf7d [correct]
[Checksum Status: Good]
Identifier (BE): @ (exooee)
Identifier (LE): @ (2xe@ee)
Sequence nurber (BE): 1 (ex0e1)
Sequence nurber (LE): 256 (8x2160)
[Response frame: 276]
v Data (14 bytes)
Data: DBBBTAE57374206d657373616765
[Length: 14]

a8 9 4b ¢5 €9 ec 1c 1d @b 9d 43 3a 08 00 45 860 - K CE
6 2e B0 00 60 00 48 01 7 7b cO a3 b1 02 b as @ {
9020 @1 01 88 00 af 7d 82 00 @0 oL
[EEC-6 6d 65 73 73 61 67 6! ﬁ

@ 7 bytes 42:55: Data (data.data) Packets: 493 * Displayed: 493 (100.0%) * Dropped: 0(0.0%) || Profile: Default

Figure 2. Receiving a Packet in Wireshark

241

Revyakina et al. Tools for Implementing and Detecting Network Steganography

Software Implementation of the Network Steganography Method

The method of interaction presented above, due to the need to manually fill in all fields of the packet
headers, cannot provide efficient transmission of the required data volumes and is more suitable for
testing purposes. For practical application of ICMP steganography, it is necessary to develop your
own client-server application, in which the described functions for generating, sending, receiving,
and recognizing packets will be performed automatically. The network socket interface discussed
earlier is suitable for network communication at the upper levels of the OSI model, in particular,
based on the DNS protocol. However, a significant modification of the packet exchange rules used in
the proposed steganography methods is not possible using standard approaches to implementing
client-server information systems and requires more control over the created and received packets.
Such features are provided by the software interface of the so-called Raw sockets.

However, the correct implementation of a large number of protocols can be difficult due to the need
to take into account a large number of requirements in different protocols, and therefore the
preferred option is to use additional libraries of software components that work on the basis of raw
sockets, but are easier to use. In this paper, we used SharpPcap libraries SharpPCap, based on
WinPcap, and Packet.NET.

WinPcapis a low-level library for Windows operating systemsthat allows applications to interact
with network interface drivers, as well as capture and transmit network packets bypassing the
protocol stack. WinPcap consists of a driver that extends the operating system to support low-level
hardware access, and a library that directly provides an interface to applications. The Wireshark
utility mentioned earlier Wiresharkis also based on the WinPcap library (Malyuk, 2004).

SharpPcap allows you to capture all traffic passing through the selected computer interface for
further analysis and processing in your own program. It supports most common protocols, and for
unsupported protocols, it is possible to get data from the package in binary form for further program
analysis. Packet.NET In turn, it provides software tools for generating its own packages of one of the
protocols it supports. Figure 3 shows the interaction scheme of the considered software
environments with the network adapter of the computer, as well as the standard method of
application interaction through the implementation of the TCP/IP protocol stack in the operating
system.

| Application I
A A
Y Y
IShaerCap | | Packet Net I I "Normal” socket |
I WinPCap I
Implementing TCP /IF in
T * operating system
I Rawsocket
3 A
Y Y
Network Adapter I

Figure 3: Network Adapter Interaction Diagram

Usage Packet.NET it consists in writing an algorithm for sequentially generating packets at different
levels of the TCP/IP model, from the upper (application) to the lower (media access level).
Accordingly, the software implementation of the steganography method under consideration
includes several stages of encapsulation (Sorokin, 2020).

The algorithm of the program's operation when sending a message is reduced to the sequential
formation of the final Ethernet packet, which will include an IP and ICMP packet with correctly filled
header fields.

242

Revyakina et al. Tools for Implementing and Detecting Network Steganography

At the initial stage, an ICMP packet is created, which, in accordance with the object-oriented
programming paradigm, is represented by an object of the ICMPv4Packet class described in the
library Packet.NET. You must set the values of the header fields described below.

Type Code — numeric identifier of the message type. In the library Packet.NET The values for this
field are stored in the ICMPv4TypeCodes enumeration and allow you to use their more
understandable text equivalents instead of numbers. When a value is selected, the "type" and, if
necessary, "code" fields in the package header are automatically filled in. These fields must be filled
in correctly only if the ICMP protocol is used for its intended purpose, and any values can be used to
generate an arbitrary packet, including the previously mentioned Echo Request or Echo Reply
values.

The Sequence and ID fields in the packet’s header are required to identify it in tasks that require
sending multiple packets. This field must be used when sending a long message, which is divided
into several shorter ones, each of which is placed in a separate ICMP packet with its own number in
the sequence specified by an integer that starts with 0 and increases by 1 for each subsequent packet,
up to the value216-1-1 (Shcheglov, 2009).

Payload Data — field for recording service data. However, when implementing the described system,
itisin it that the information that needs to be transmitted through a hidden channel will be recorded.

RESULTS

After that, the created packet is transmitted to the underlying network layer protocol — IP, which
requires filling in the source Address and destination Address fields intended for recording the IP
addresses of the sender and recipient. The sender's address can be obtained from the properties of
the network interface, and the recipient's address must be set by the user. The packet is then
transmitted to the next channel layer.

At the link layer, just like the previous one, you need to add the source and destination MAC
addresses to the packet header. At the same time, the source MAC address, as well as its IP address,
can be obtained from the properties of the network interface, and to determine the destination MAC
address, you can use various methods, such as an ARP table, sending an ARP request, or entering it
manually. This package also requires calculating the checksum using the Update Checksum
methodUpdateChecksum. After successful completion of all the described actions, the Ethernet
packet generated at the link layer can be transmitted to the network.

The receiving party must perform the same steps, but in reverse order, i.e. first receive the Ethernet
packet, extract the IP packet from it, then extract the ICMP packet from the IP packet and read the
data recorded in it. To do this, the following decapsulation functions from the Sharp cap library are
consistently used:

Ethernet Packet. Get Encapsulated(packet)
IPv4Packet.GetEncapsulated(packet)
ICMPv4Packet.GetEncapsulated(packet)

In the listed functions, "packet” is a parameter that is passed as a network packet that came from the
previous layer of the OSI model. The result of the last function is an object that represents the
structure and content of an ICMP packet, the "Data" field of which contains information transmitted
through the tunnel.

After the libraries ' functioning principle was analyzed Packet.NET and Sharp cap was created as a
test app. It creates an ICMP packet with the required content and sends it to the specified IP and MAC
address via the selected network interface (Figure 4).

A network interface is a software representation of a hardware device that allows operating systems
and applications to transmit data over a computer network (Fraczek at el., 2016).

243

Revyakina et al. Tools for Implementing and Detecting Network Steganography

s ICMP Messanger — [>

VinTepdpenc: 1: Network adapter 'Microsoft' on loca -

-—=>192.168.1.13: TEST MESSAGE
192.168.1.13--=>: OTBET

CoobueHue:
TEST MESSAGE e —
1P: |192,168,1,13 MAC: |8CB87E56BDB4

Figure 4: Main Application Form

In the figure, the "interface" input field is used to select one of the available network adapters on
your computer. An ICMP packet will be sent through it. Of course, the selected network interface
must be connected to some network, otherwise the message will not be sent. The adapter selected
in the example figure is called "Network adapter Microsoftonlocalhost". In fact, this device is a built-
in network card of the computer (Aknin, 2000).

The "MAC" field is used to record the MAC address of the recipient's network interface. Recipient's
MAC address: "8C:B8:7E:56:BD: B4".

The "IP" field is used to record the IP address of the recipient of the ICMP packet. Recipient's IP
address: "192.168.1.13".

The "Message" field records the data that needs to be sent to the recipient. In this case, the
information is: "TESTMESSAGE".

After all the fields are filled in, click on the "Submit" button. After that, an ICMP packet with type 8 is
generated. Using encapsulation, the IP and MAC address are added to it, and then this packet is sent
to the recipient. In the second instance of the application, you can detect the sent message and send
aresponse.

In order, to see not only the message, but also all the information about the ICMP packet, use the
Wireshark utility. When sending a message, the traffic analyzer "catches" the ICMP packet (Figure
5). In this figure, you can see the IP address and MAC address of the sender and recipient, the type
of ICMP packet, and the message text itself.

M “Ethernet o x
Paiin Pepaxtuposarve pocuotp Janyck daxear Awanus Crawicruka Terepomva becnposogHodi MHctpyments Momouws
dnse BREB Rez=TEEEQaaE
[N Nprmens grcreiints dwnorp <t]+
No. Time source Destination Protocal Lengtn Info

20 15.889666 192.168.1.13 224.0.0.251 [71 Standard query @x0008 ANY Aorus.local, "QH" question

38 15.889717 fe80::fd87:70f9:7¢3.. £F2::fb MDNS 91 Standard query ©x000a ANY Aorus.local, "QM" question

31 15.889718 fe80:: fd87:70F9: 7¢3.. FF02::fb MDNS 129 Standard query response 8x0000 AAAA fe8@::fd87:780:7¢3d:7e2e A 192.168.1.13

32 15.889753 192.168.1.13 224.8.8.251 HDNS 109 Standard query response Bx008 AAAA fe8@::fdB7:780:7c3d:7e2c A 192.168.1.13

33 15.919355 182.168.1.13 224.8.0.22 1GHPY3 60 Membership Report / Join group 224.8.8.252 for any sources

3415010367 feB0::fdB7:700:7c3. ££02::16 IMPVG 90 Multicast Listener Report Message v2

3718644585 192,168.1.13 192,168.1.13 1cHP 54 Echo (ping) request id-6xe001, seq-1/256, ttl-64 (no response found!)

42 26524430 192.168.1.13 192.168.1.2 1cm 60 (Echo (ping) Tequest TdLBYo06T, Seqo1/356; TEISH (o Fesponse Foundly

4531580645 192.168.1.16 52.166.127.37 TLSvi.2 189 Application Data

45 31686213 52.166.127.37 192.168.1.18 TR 66 9354 » 4542 [ACK] Seq=1 Ack=127 Win=16383 Len=6 -

Code: @ ~ b4 2e 99 17 do 26 8c b8 7e 56 bd b4 68 80 45 60 . N E

Checksum: @x880@ incorrect, should be @x1264 99 21 00 ©0 90 90 42 01 7 7¢ 0 a8 @l od <@ a8 ! el

[Checksun Status: Bad] @820 61 02 @8 ee 00 88 oe 61 oo o1 [CEETREPEECEE oo OTBET]

. c B0 00 00 60 00 B0 00 00 00 00 00 @8

Tdentifier (BE): 1 (8x0001)

Tdentifier (LE): 256 (0x9100)

Sequence Number (3F): 1 (6%0001)

Sequence Number (LE): 256 (8x8100)

[No response seen]

v Data (5 bytes)
Data: 4f54424554
[leneth: 51

© 7 bota (deta.dsta), 5 bytefs) Pixeres 47 - Moxasavas: 47 {100.0%) - Norepsas 0 (0.0%) | Mpogsun: Defauit

Figure 5: Detailed Information about the Packet in Wireshark5

244

Revyakina et al. Tools for Implementing and Detecting Network Steganography

All previous actions were performed when the firewall and anti-virus protection were disabled, as
theoretically this could make it difficult to transmit the message (Galatenko, 2006).

In order, to check the effectiveness of programs, in other conditions, you need to run the firewall and
antivirus protection. The test computer has ESETInternetSecurity antivirus installed, which
manages all firewall parameters. Accordingly, to enable Firewall and antivirus protection, go to the
ESETInternetSecurity settings and run the necessary parameters (Figure 6).

ST INTERNETSECURITY o
PaclumpenHbie napameTps! Q x @
MOAY/Tb OBHAPYKEHMA OCHOBHOE

OBHOB/EHVIE Brnrounts daiiepson
®aiiepaon

VIHTEPHET 11 3/IEKTPOHHAR
nouTA

KOHTPO/Ib YCTPOWCTB

CIIYKEBHBIE MPOrPAMMBI

VIHTEPOEINC MOJIb3OBATE/IA
AONO/HUTENBHO

W3BECTHBIE CETU

MPO®UAN ®AVEPBOJA

Figure 6: Launching the Network Screen

After starting, you can repeat the procedure for sending a message, which will still be delivered to
the recipient. This is due to the fact that the firewall acts on the transportlayer of the TCP/IP protocol
stack, and the ICMP protocol works on the network layer, and the created ICMP packet with type 8
is actually an echo request, and does not fall under the standard firewall rules.

As a result, the resulting software implementation of the ICMP steganography method is capable of
performing hidden data transmission when blocking transport layer protocols (Cherckesova et al.,
2024).

Statistical Analysis of Traffic to Identify Steganographic Messages

Statistical traffic analysis uses various parameters and characteristics to search for steganographic
messages, which can help identify anomalies or hidden data in network traffic. These parameters
include:

- distribution of packet sizes.

- time intervals between packets.

- distribution of bits and bytes in packets.
- frequency characteristics.

- correlations between packages.

- specific network protocols.

Of these methods, frequency response analysis and comparison with normal traffic are suitable for
detecting ICMP steganography. To implement these methods, we use the Wireshark packet sniffer
discussed earlier Wireshark. Statistical analysis in Wireshark is one of the many features of this tool
and can be used to identify patterns that may indicate steganography or other anomalies in network
traffic. Statistical analysis functions include calculating statistics based on protocols, packet sizes,
sources and destinations, time intervals, and data transmission errors (Kodatsky et al., 2024).

Protocol statistics allow comparison with normal traffic. To do this, the experiments recorded
network traffic from several virtual machines during their normal operation. Figure 7 shows a
screenshot of the Wireshark Protocol Hierarchy window. In addition to the number of packets of
each protocol in the captured traffic, it also shows which packets were inside which ones, which is
not important for the problem under consideration. The figure shows that the number of ICMP

245

Revyakina et al. Tools for Implementing and Detecting Network Steganography

protocol packets (InternetControlMessageProtocol) is very small and amounts to 8 units out of 5000,
or 0.2%.

M Wireshark - Crancrka Mepapxn Mporokonoe - Ethernet - o x
MpaTokon Mpougekr MNakeros Naxets MpouewT baitos baitel But/c KoWeuwwie MNakets PDUs
¥ Frame 1000 5000 1000 3303139 605k 0 5000

v Ethemet 1000 5000 22 72112 13k 0 5000
¥ Logical-Link Control 04 22 0.0 858 157 0 22
Spanning Tree Protocol 04 2 00 792 s 2 2
v Intemet Protocol Version 4 994 4971 30 99420 18k 0 4971
 User Datagram Protacol ER 157 0.0 1256 230 0 157
QUIC IETF 07 36 07 23870 4375 36 42
~ NetBIOS Datagram Service 00 1 00 201 w0 1
¥ SMB (Server Message Black Protacal) 00 1 00 Mmoo a0 1
~ SMB MailSlot Protocol 0o 1 0.0 25 4 Q 1
Microsoft Windows Browser Protocol 00 1 0.0 33 6 1 1
Domain Name System 24 120 03 9942 1822 120 120
¥ Transmission Contral Protocal 96.1 4806 939 3100049 568 k 3310 4806
Transport Layer Security 289 1446 914 3018454 553k 1446 1505
NetBIOS Session Service 00 1 00 1 [1 1
~ Hypertext Transfer Protocol 08 38 09 29297 5369 2 8
Online Certificate Status Protocol 07 34 05 15143 2775 34 34
Line-based text data 00 2 0.0 o8 172 2
Data 02 n 0.0 1 2 1 1
Internet Control Message Protocol 02 8 00 320 58 8 8
Address Resolution Protocol 01 7 0.0 232 42 7 7
<
s o g
Sapeme | KonWposeTe™ Crpsska

Figure 7: Protocol Statistics for Normal Traffic

The following Figure 8 shows a screenshot of a similar window, but for traffic captured during the
exchange of messages hidden inside ICMP packets. The figure shows that the number of such
packages has increased to 19 pieces and is 0.4 %.

In general, as can be seen from the presented figures, for any service protocol, the number of its
packets relative to the total traffic volumes is always minimal. An increase in the number of service
packages indicates potential problems in the network and indicates the need for more thorough
verification. To do this, you can conduct a more thorough analysis of the packets of the protocol that
caused suspicion, in particular, check the distribution of packet sizes.

M Wireshark - Craructixa Mepapxuu Mpotokonos - Ethernet - o x
Mpotokon MpovenT Maketoa Makersi Mpouewt Baiiron Baiitsl But/c Komeunsie Makets Koweusie Baiiti
~ Frame 1000 5000 1000 2650761 293k 0 0

~ Ethernet 1000 5000 28 73216 8113 0O 0
~ Logical-Link Control 08 38] 1543 170 0 0
Spanning Tree Protocol 07 37 01 1332 147 37 1332
Cisca Discovery Protocal 00 1 0.0 22 0 1 a2
Link Layer Discovery Protocol 0.0 1 0.0 1me 121 16
~ Intemet Protocol Version 4 99.1 4955 37 29100 10k © 0
~ User Datagram Protocol 60 301 01 2408 266 0 0
QuIC IETF 09 a4 0.9 24525 217 M4 18274
Mikrotik Neighbor Discovery Protocol 00 1 0.0 131 A 131
Domain Name System 5.1 256 08 20801 2304 256 20801
+ Transmission Control Protocol 927 4635 9T 2432041 269k 2338 803258
Transport Layer Security 449 2246 896 2374733 263k 2246 2272256
NetBIOS Session Service 00 1 0.0 1 o i 1
Malformed Packet 0.0 2 0.0 [0 2 0
~ Hypertext Transfer Protocol 07 36 08 21416 23713 2 650
Online Certificate Status Protacol 06 32 04 9500 1052 32 9500
Line-based text data 00 2 0.0 8 0 2 8
Data 02 12 0.0 12 1 12 12
Internet Cantrol Message Protocal | 04 19 0.0 760 84 19 760
Address Resolution Protocol 0.1 6 0.0 22 24 6 222
e
JaKpeiTe KonuposaTs = Cnpagsa

Figure 8: Protocol Statistics for Traffic with Hidden Messages

Unlike data packets, the size of which determines exactly what data needs to be transmitted to the
application that generated the packet, service protocols usually have a limited set of transmitted
data, such as a variety of requests, response, state codes, etc. Even if the service packet transmits
some data that cannot be determined in advance in the future. Since they relate to a specific network,
the format of this data is still likely to assume a fixed size, such as addresses and masks. Thus,
although service protocol packages may have different sizes, the number of different packet variants
will be limited. This is demonstrated in Figure 9, which shows a screenshot of normal Wireshark
traffic with filtered ICMP packets. It contains nakeTsi3 types of packets: Information request, Echo
request, and Echo reply. However, all Information request packets are giuny60 bytes long, while
Echo request and Echo reply are 74 bytes long (Cherckesova et al.,, 2024).

246

Revyakina et al. Tools for Implementing and Detecting Network Steganography

Figurel-0 shows an example of other captured traffic, where ICMP packets are generated
programmatically and contain text messages. Since the length of such messages may vary, the packet
size also varies. It differs from the standard size of a normal packet of the type that was chosen for
message injection (in this case, it is an Echorequest), and the size of the packets themselves differs,
even though they are all formally of the same type.

M Pasvepy naxetos.peapng - o ®
©aiin Pepaxtupopanve Mpocwotp 3anyck 3axear Awanns Cramucrika Teneomua BecnpoBogHol MHcrpymenrs: Momous
dm 3@ RER«==TLEI =EQQAH
Licmp BED)+
o Time Source Destination Protocol Length Info
6 2.484316 102.168.1.13 192.168.1.10 TcHp 60 Infornation request id-8x0001, seq-1/256, ttl=64
40 10.085888 192,168.1.13 192,168.1,10 Tcnp 60 Information request id=8xd00l, seq=1/256, ttl=64
55 29.462561 192.168.1.13 192.168.1.2 TcHp 60 Infornation request id=Gxd002, seq=2/512, ttl=64
102 32.787074 192.168.1.13 192.168.1.2 TcHp 60 Infornation request id-8x0002, seq-2/512, ttl-64
116 42.247585 192.168.1.10 5.255.255.242 IcHp 74 Echo (ping) request id-6x0001, seq=54/13824, tt1-128 (reply in 111)
111 42.275608 5.255.255.242 192.168.1.10 IcHp 74 Echo (ping) reply 1d=6x0001, 5eq=54/13824, ttl=248 (request in 116)
112 43.253892 192.168.1.18 5.255.255.242 IcMp 74 Echo (ping) request id=Bx8081, seq=55/14888, ttl=128 (reply in 113)
113 43,281888 5.255.255.242 192.168.1.18 P 74 Echo (ping) reply id=Bx8881, seq=55/14888, tt1=249 (request in 112)

115 44257127 5.255.255.242 IcHp 74 Echo (ping) request id=Bx8681, seq=56/14336, tt1=128 (reply in 118)
116 44,284969 192.168.1.10 TeHp 74 Echo (ping) reply 1d=Bx0091, seqs56/14336, ttl=248 (request in 115)
117 45.268256 5.255.255.242 TcHP 74 Echo (ping) request id-0x0001, seq=57/14592, tt1-128 (reply in 118)
118 45.295830 192.168.1.10 IcHp 74 Echo (ping) reply id-8x0001, seq-57/14592, tt1-249 (request in 117)
133 62.052004 192.168.1.2 Tcnp 60 Information request id-8x0002, seq=3/768, ttl=64
164 71.406338 192.168.1.13 192.168.1.2 IcHp 60 Information request 1d=8x8002, seq=4/1024, ttl=64

© 7 Intermet Cantrol Message Protocol: Protocel Makers: 191 - Moxasawe: 14 (7.3%) Morepawa: 0 (0.0%) | Mopodwne: Defauit

Figure 9: Normal Traffic ICMP Packet Sizes

Such a deviation in traffic characteristics indicates non-standard operation of the ICMP protocol and
may indicate the presence of a hidden communication channel.

M Pasmepui naketos 2 pcapng — o x
Qaiin Pepaxtuposanve [pocmoTp 3anyck 3axsaT Awaaus CraTacTvka Tenedowus becnposoaWol MecTpymewts: [lomolus
A m @® REB e+s==fFas/=Eaaqan
(W [icme -]+
No. Time Source Destination Protocol Length Info
88 17.489845 192.168.1.18 192.168.1.13 paL 47 Echo (ping) request 1d=8x@e81, seqs=1/256, ttls64 (no response
181 21.868296 192.168.1.13 192.168.1.10 IcMp 68 Echo (ping) request id=8x@881, seq=1/256, ttl=64 (no response fq
113 30.775893 192.168.1.10 192.168.1.13 TCHP 54 Echo (ping) request id=8x@0@1, seq=1/256, ttl=s4 (no response
130 39.662127 192.168.1.13 192.168.1.10 cHP 60 Echo (ping) request 1d-8x@001, seq=1/256, ttl=64 (no response
214 81.311845 192.168.1.10 192.168.1.13 CHp 85 Echo (ping) request 1d=0x@e01, seq=1/256, ttl=64 (no response
249 88.131147 192.168.1.13 192.168.1.18 IcMP 68 Echo (ping) request 1d=Bx@881, seq=1/256, ttl=64 (no response f
268 182.295044 192.168.1.13 192.168.1.18 CMP 77 Echo (ping) request id=8x@8881, seq=1/256, ttl=64 (no response
278 113.280311 192.168.1.10 192.168.1.13 cHP 56 Echo (ping) request 1d=8x@001, seq=1/256, ttl=64 (no response
v Data (5 bytes) - Bc b8 7e 56 bd b4 b4 2e 99 17 do 20 @8 00 45 60 S E
Data: 4BES6CECHF B0 21 00 0@ 00 OB 4B @1 f7 74 cO a8 @1 Oa cd a8 |- @ -t
R ¥ | @a2e el od o8 00 00 o0 00 o1 oo ol NI
>
© 7 Data (data.data), 5 byte(s) ManeTsi: 280 * Mokasaksi: B (2.9%) * MoTepano: 0 (0.0%) || Mpodwns: Default

Figure10: Size of ICMP Packets with Embedded Messages
CONCLUSIONS

As a result of the conducted experiments on traffic analysis, it was found that statistical
characteristics of traffic can be used to identify steganographic messages that use service network
protocols. Thus, the first sign of transmission of hidden (additional) data is a change in the
proportions of packets related to service and transport protocols, shown in Figures 8 and 9. In
"normal” traffic, the share of service packets is minimal. The use of network steganography tools
leads to a significant (in the considered example, 2 times) increase in the share of service packages.

Another important criterion for identifying shorthand data is the size spread of similar packets of
the same protocol. As shown in Figure 10, the implementation of messages in service packages using
the developed application results in a variation in their size. This parameter distinguishes the
received traffic from the one in which steganography was not used. Sharing the presented criteria
makes it possible to identify messages embedded in service network packets using the
steganography methods described and implemented in the paper.

Thus, the methods and tools considered in the work, depending on the field of use, allow both to
detect attempts to use steganographic methods for hidden data transmission, and to create their
own secure communication channels, thus increasing the security of telecommunications systems.

247

Revyakina et al. Tools for Implementing and Detecting Network Steganography

REFERENCES

Malyuk AA. Information security: conceptual and methodological foundations of information
protection: a textbook for universities. Moscow: Goryachaya liniya-Telekom; 2004.

Shcheglov AY. Protection of computer information from unauthorized access. St. Petersburg: Nauki
Tekhnika; 2009. 384 p.

Anin BA. Protection of computer information. St. Petersburg: BHV-Petersburg; 2000. 384 p.

Pavlin DV, Makosii Al, Zhdanov ON. The network steganography. Implementation of the algorithm
RSTEG. Reshetnev Readings 2014;18(2):322-324.

Golubev EA, Emelyanov GV. Steganography as one of the directions of ensuring information security.
T-Comm - Telecommunications and Transport 2019; S3:185-186.

Cherckesova L, Revyakina E, Buryakova O, Gazizov A. Creation of an encryption algorithm resistant
to attacks through side channels of leakage. E3S Web of Conferences 2024; 583:06011.
https://doi.org/10.1051/e3sconf/202458306011

Cherckesova L, Revyakina E, Safaryan O, Porksheyan V, Kazaryan M. Analysis of the possibilities of
carrying out attacks on the functions of transferring control to operating system console
using active intelligence methods. International Research Journal of Multidisciplinary Scope
2024;5(2):516-534. https://doi.org/10.47857 /irjms.2024.v05i02.0558

Ganzhur MA, Dzyuba YaV, Panchenko VA. Features of digital steganography as a method of ensuring
data hiding. Problemy sovremennogo pedagogicheskogo obrazovaniya 2018;59-4:10-15.

Kodatsky N, Revyakina E, Gazizov A, Gunko V. Using machine learning to forecast hard drive failures.
E3S Web of Conferences 2024;549:08024https://doi.org/10.1051/e3sconf/202454908024

Peskova OYu, Halaburda GYu. Application of network steganography for protection of the data
transferred over the internet. Izvestiya SFEDU. Engineering Sciences 2017;12(137):167 176.

Sorokin SV. Development of network applications using the TCP/IP protocol stack: textbook. Tver:
Tver State University; 2020. 80 p.

Belkina TA. Analytical review of the use of network steganography for solving information security
problems. Molodoy uchenyy 2018;11(197):36-44.

Galatenko VA. Standards of information security: a course of lectures. Moscow: Internet University
of Information Technologies; 2006. 264 p.

Fraczek W, Szczypiorski K. Perfect undetectability of network steganography. Security and
Communication Networks 2016;9:2998-3010. https://doi.org/10.1002/sec.1491

248

