
Pak. j. life soc. Sci. (2025), 23(2): 249-257 E-ISSN: 2221-7630;P-ISSN: 1727-4915

Pakistan Journal of Life and Social Sciences
www.pjlss.edu.pk

https://doi.org/10.57239/PJLSS-2025-23.2.00162

249

RESEARCH ARTICLE

Development of a Methodology for the Safe Operation of
Containerization Technology
Elena Revyakina1, Andrey Gazizov2

1,2Don State Technical University, Rostov-on-Don, Russia

ARTICLE INFO ABSTRACT

Received: May 4, 2025

Accepted: July 15, 2025

Keywords

Information security
Containerization Technology
Crypto Containers
Information Systems
Secure Network
Infrastructure

*Corresponding Author:

elena.a.revyakina@gmail.com

The article examines the need to develop algorithms for exploiting
containerization technologies aimed at ensuring the stability and security
of software applications during their interaction with information
technology objects. This is relevant in the context of the constant growth of
threats and requirements for the protection of information resources. The
study proposes to develop a mechanism for implementing containerization
in information systems, as well as to create software for monitoring the
status of containers, controlling their launch, analyzing their operation and
searching for vulnerabilities, which will increase the level of security and
efficiency of using container technologies. In this study, the method of
exploiting containerization technology is understood as the use of software
scripts for loading and unloading critical files of the information system into
crypto containers. This allows increasing the level of data protection and
simplifying resource management.

INTRODUCTION

Organizations, engaged in development and operation of software tools of information systems,
actively use virtualization and containerization technologies. Containerization, as a method of
packaging applications and their dependencies in isolated environments, plays a key role in
increasing the efficiency of software development, deployment and management. Cryptocontainers,
in particular, ensure the protection of confidential data by encryption, which makes them an
important tool in ensuring information security. However, despite the advantages of
containerization, such as acceleration of development processes, saving resources and increasing
flexibility, the protection methods used for physical and virtual servers are not always suitable for
containers. This creates the need to develop specialized approaches to ensuring security.

Modernapproaches to building a secure network infrastructure involve not only high efficiency of
means informational security, but also their availability, flexibility, and responsiveness to potential
threats. In this study, the method of exploiting containerization technology is understood as the use
of software scripts to download and unload critical files of an information system into
cryptocontainers. This allows increasing the level of data protection and simplifying resource
management. In the process of exploiting information systems, the task of integrating methods and
means of protection, as well as operational management of information security events, arises. One
of the key problems is choosing the optimal strategy for implementing containerization into an
existing security system. This is due to the lack of practical experience in using such technologies, as
well as the complexity of their combination with traditional protection methods. As a result, at the
stage of active exploitation of systems, the problem of resource protection becomes more acute,
which requires the development of new approaches and solutions (Vyugov et al., 2025).

Thus, there is a contradiction between the growing requirements for the security and stability of the
functioning of information systems and the possibility of integrating new methods, such as
containerization, into existing security systems. This defines the research problem, which consists

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

250

in finding effective ways to use containerization to ensure information security in accordance with
modern requirements.

MATERIALS AND METHODS

Assessing the level of information security in the context of information systems with implemented
containerization technology is a multifaceted task that requires taking into account the specifics of
this technology. Containerization, as a method of virtualization at the operating system level, offers
significant advantages in terms of flexibility, scalability, and efficiency of using software and
computing resources. However, the above-mentioned advantages are accompanied by new
challenges in the field of information security, which require clarification in the approach to
information security (Boydadaev, 2024).

The main problem with assessing information security in containerized systems is that such systems
have a slightly different architecture compared to traditional information systems. Containers use a
common kernel of the host operating system, which ensures high performance and resource savings,
but at the same time creates potential vulnerabilities. Kernel-level vulnerabilities can lead to the
compromise of all containers running on a single host, which makes host security critical. In addition,
containerized systems are often built on a microservice architecture, which involves multiple
network interactions between containers. This aspect can increase the number of potential
approaches to implementing an attack and requires a well-developed approach to protecting
network interactions.

To increase the protection of inter-network interaction, it is necessary to use a technology such as a
firewall, which can effectively minimize unwanted interactions with the external environment,
which means resources outside the containerized system. This step may require the expenditure of
additional resources, but ultimately provides greater security, compared to classic information
systems due to the high degree of isolation of processes and network interaction. Another important
problem is the lack of unified standards and methodologies for assessing the security of
containerized systems. As a result, there is a need for regular vulnerability scanning and container
configuration analysis with subsequent analysis of the results, taking into account the specifics of
each container image and the information system as a whole.

One of the key issues in the context of containerized systems security is the widespread use of
container images from open repositories such as Docker Hub. These repositories contain a huge
number of ready-made images that can be easily used to deploy applications. However, many of
these images contain vulnerabilities or misconfigured security settings. Research shows that a
significant portion of the images available in open repositories contain outdated versions of software
that may be vulnerable to known attacks. For example, in 2020, a study by Palo Alto Networks found
that more than 30% of images in Docker Hub contained critical vulnerabilities (Vikhlyaev, 2024).
This poses serious security risks, since the use of such images can lead to a compromise of the entire
system. In addition, many developers do not pay enough attention to checking images for malicious
code. Images containing hidden cryptocurrency miners or other forms of malware have been found
in open repositories. This highlights the need to implement rigorous image verification processes
before and during use in production environments. Containerized systems are often the target of
attacks that exploit known vulnerabilities. In recent years, several serious vulnerabilities related to
container technologies have been recorded. The problem of assessing information security in
containerized systems is complex and requires taking into account many factors, including the
specifics of the container architecture, the use of images from open repositories, and the presence of
known vulnerabilities. The widespread use of container technologies and their integration into
modern information systems make this problem especially relevant. To solve it, it is necessary to
develop specialized tools that will effectively assess and improve the security level of containerized
systems. This includes the implementation of automated testing processes, regular component
updates, and the use of modern protection mechanisms.

2.1. Theoretical aspects of information security in containerized information systems

Containerization technology is an operating system-level virtualization method that isolates
applications and their dependencies in separate containers. Unlike classic virtual machines, which
emulate hardware and require a separate operating system for each instance, containers use a

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

251

common kernel of the host operating system, making them more lightweight and resource efficient
(Fung et al., 2024).

Containerization plays an important role in ensuring increased information security due to several
key features. First, containers provide process isolation, which helps minimize the risks of data
leakage and unauthorized access. Each container runs in its own isolated space, which prevents
other containers or host processes from interfering with its operation. This is especially important
in conditions where several applications belonging to different users or organizations can run on
one host. Second, containerization helps improve security by standardizing and automating the
processes of deploying and managing applications. Containers are created based on images that
contain all the necessary dependencies and settings. This helps minimize the risks associated with
configuration errors or lack of necessary updates. In addition, the use of orchestration tools such as
Kubernetes allows you to automate the processes of scaling, updating, and restoring containers,
which reduces the likelihood of vulnerabilities due to human error. Third, containerization helps
improve security by simplifying the processes of testing and implementing updates. Since containers
are isolated from each other, updates and changes in one container do not affect the operation of
others.

Containerization technology is the process of isolating software applications and their dependencies
into lightweight, self-contained, and reproducible containers that can run independently of the
underlying operating system (Amaliev et al., 2024). Containerization enables applications to be
portable, reproducible, and independent of infrastructure constraints.

The fundamental principle of containerization is the use of virtualization at the operating system
level. Unlike classic virtualization, in which each virtual environment (virtual machine) is allocated
a separate copy of the operating system, containers use a single kernel of the host system, which
makes them much lighter in terms of resource consumption. Containers provide process isolation,
allowing each of them to function in a separate environment that contains only the necessary
libraries (Shaidullin et al., 2025).

The container environment operates on the copy-on-write (COW) file system, which reduces the
amount of disk space occupied by dividing the base layers between containers. This mechanism
significantly speeds up container startup and reduces the load on the system. Thanks to this
approach, containers can be launched almost instantly, and they are updated by replacing only the
changed layers, which minimizes downtime and reduces the amount of data transferred. Thus,
containerization provides effective management software environments, increasing the mobility,
performance and security of applications. At the same time, it is important to consider the potential
risks associated with the operation of this technology, as well as to use the best practices for
managing container infrastructure to minimize vulnerabilities and ensure reliable protection of
information systems.

Despite the many advantages of containerization, its use is associated with certain risks that can
pose a threat to the security of information systems. Container infrastructure includes many
elements, such as the operating system kernel, container images, networks, image registries, and
orchestration mechanisms, each of which can serve as a potential attack point. Let's consider the
main threats and risks associated with the use of containerization technology, as well as possible
methods for minimizing them.

Container isolation is achieved through namespaces and cgroups mechanisms in the operating
system kernel. However, the level of isolation provided by containers is significantly inferior to full-
fledged virtualization, which makes attacks on the host system kernel level possible

Container images are the foundation for deploying containers, but when used with unverified,
outdated, or in correct collected images may introduce vulnerabilities into the system. The main
problems associated with container images are:

use of outdated components - many container images include libraries and packages that contain
known vulnerabilities;

Malicious images – uncontrolled use of third-party images from open registries can lead to the
download of malicious code; Protection methods:

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

252

use of official and verified images from trusted repositories (e.g. Docker Hub, Google Container
Registry, AWS Elastic Container Registry);⎯ Regular updating of images and dependencies.

2.3 Benefits of using containerization technology in information security

Modern software systems require effective methods of ensuring information security, given the
dynamic development of threats and the need to protect data at all levels of architecture applications.
In this context, containerization becomes not only a technology that improves the process of
deploying and managing software environments, but also an important tool in ensuring the security
of applications and data.

One of the key benefits of containerization is the ability to run applications in isolated environments.
This isolation ensures that processes in one container cannot interact with processes an other
container, unless this is provided for by security settings. Containers use namespaces and cgroups
mechanisms, which allow you to control access to host system resources. Namespaces create
logically separated instances of system resources, such as file systems, network, process identifiers
(PIDs), and interprocess communication (IPC). This prevents one container from interfering with
the processes of another (Usoltsev et al., 2024). Cgroups, in turn, allow you to set limits on the use of
processor time, RAM, and other system resources, preventing attacks based on resource exhaustion.
Thus, container isolation provides a high level of protection, preventing unauthorized access to data
and reducing the likelihood of attacks spreading between applications running on the same host
system.

Containers contain only the minimum required set of dependencies and executables, which
significantly reduces the potential attack surface. Traditional server and cloud infrastructures often
include numerous software libraries and services, many of which may contain vulnerabilities.
Containers, in turn, provide the ability to include only those components that are necessary for a
specific application to work. A minimalist approach to container configuration allows you to exclude
unnecessary services, ports, and dependencies, which reduces the likelihood of exploitation by
attackers. In addition, container images can be built using the "least privilege" principle, excluding
administrative accounts from them and granting each container only the necessary access rights.

Containerization enables dynamic scaling of applications depending on the load. Orchestration tools
such as Kubernetes, Docker Swarm, and OpenShift allow you to quickly increase or decrease the
number of running containers, adapting to changing operational conditions. The flexibility of
containers is also evident in their ability to work in various environments, including cloud platforms,
on-premises servers, and hybrid infrastructures. This means that companies do not need to
completely rebuild their IT infrastructure when migrating to container technologies, and security
remains high regardless of the deployment environment.

Within the frame work concepts DevSecOps containerization allows you to integrate security
mechanisms across all stages of the application lifecycle. Automated processes for scanning
container images for vulnerabilities (for example, using tools like Trivy, Clair, Snyk, and Anchore)
allow you to identify potential threats already at the development stage (Marker et al., 2024).
Additionally, automated monitoring and analysis tools such as Aqua Security and Sysdig Secure
provide the ability to monitor container operations in real time. They monitor the behavior of
running containers, analyze network connections, and prevent unauthorized access attempts.

If an individual container is compromised, it can be quickly replaced with a new instance without
affecting the overall infrastructure. This property of container technologies is especially useful in the
event of cyberattacks, when it is important to minimize service downtime and ensure their
uninterrupted operation. Thanks to the Copy-On-Write (COW) file system, container environments
support instant deployment of updates and rollbacks to previous versions of the application, which
makes recovery from an incident almost instantaneous. This approach is especially important for
critical services whose operation must be continuous.

Many modern security tools, such as Falco, Sysdig, and StackRox, provide continuous analysis of
container behavior, detecting anomalous activity in real time. These solutions use machine learning
and process behavior analysis techniques to detect suspicious patterns, such as execution of
unknown binaries, attempts to escalate privileges, or changes to system configurations (Vered,

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

253

2024). Using such tools allows administrators to quickly respond to threats, preventing potential
attacks and reducing the likelihood of exploitation of vulnerabilities in a container environment.

Container technologies provide advanced network security controls that effectively prevent cross-
container attacks and provide robust protection against unauthorized access to data. One of the key
tools in this area is container orchestrators such as Kubernetes, which support network security
policies (Network Policies). These policies allow administrators to clearly define allowed and
prohibited interactions between containers, which contributes to a more secure and manageable
environment.

With these capabilities, you can set up network microsegmentation by separating applications into
isolated network zones. Microsegmentation allows you to limit interactions between different
system components, which significantly reduces the risks of horizontal attack propagation in the
event of a compromise of one of the infrastructure elements. For example, if an intruder gains access
to one container, their ability to attack other system components will be strictly limited thanks to
pre-configured rules. Thus, container technologies not only provide effective application isolation,
but also offer powerful tools for increasing the level of network security. Using microsegmentation
and network security policies allows you to minimize potential threats and create a more attack-
resistant infrastructure.

RESULTS AND DISCUSSION

Algorithmization of container exploitation methods to improve the security of software
application operation

Development of exploitation algorithms technologies containerization, aimed at ensuring the
stability and security of software applications in the process of their interaction with information
technology objects. This is especially important in the context of the constant growth of threats and
requirements for the protection of information resources. The study proposes to develop
mechanisms for implementing containerization in information systems, as well as to create a
Telegram bot for monitoring the status of containers, controlling their launch, analyzing their
operation and searching for vulnerabilities, which will increase the level of security and efficiency in
using container technologies

The creation of a bot for monitoring and managing Docker containers is due to the need to simplify
and automate the processes of administering containerized applications. Such a tool provides a
convenient interface for interacting with containers, allowing administrators to quickly respond to
changes and maintain stable operation of the system.

Telegram bot for managing Docker containers is a modern software solution created to simplify
interaction with container infrastructure. This tool is aimed at optimizing routine processes related
to monitoring, management and analysis To containers. The main idea is to provide users with an
intuitive interface that works within the popular Telegram messenger, which minimizes the
complexity of setup and training.

The product under development is view Telegram bot stands out from existing analogues []
thanks to the following key features:

1. The program does not require installation of additional software or complex configuration. All
work is done through Telegram, which reduces the entry threshold for new users;

2. Real-time availability, notifications about the status of containers and the ability to manage them
are available at any time and from any device with access to the messenger;

3. Integration with everyday tools. Telegram is one of the most popular messengers in the world,
which is actively used in the professional environment, which makes our product as accessible and
familiar to the audience as possible;

4. Focus on small and medium businesses; most existing solutions are aimed at large corporations,
while our bot is ideal for startups, small DevOps teams and freelancers

The main functions of the program include:

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

254

Monitoring of container statuses, automatic notification of container starts and stops allows time
identify and troubleshoot problems while minimizing service downtime;

State query and state management, the ability to query the current status of containers, as well as
manually start or stop them via a bot provides flexibility and control over the environment;

Working with logs, access to container logs via a bot allows you to quickly analyze the causes of
possible errors or unstable operation of applications;

Backup, integration of the backup mechanism guarantees the safety of data and provides the ability
to restore it in case of unforeseen situations;

Component updates, regular reports on the availability of updates, the ability to request them and
manually launch them through a bot help maintain the current and secure state of all components.

So the bot unites functionality for monitoring, managing and updating containers in a single
interface, reducing administrative costs and increasing the efficiency of working with containerized
infrastructure. This is important because the use of vulnerable images or improperly configured
containers can lead to the compromise of the entire system. Scanning allows you to identify such
problems at an early stage, which allows you to eliminate them before deploying to the final system,
minimizing security risks. It is also necessary if the content has not been updated for a long time, this
allows you to make the necessary decision either to update the internal configuration or other
measures if there is a known incompatibility of certain versions of applications in the container
environment or in the container-host system (Kazaryan et al,. 2024).

Creating a Telegram bot for managing Docker containers requires careful planning and adherence
to the sequence of production stages. The first stage involves defining the bot structure, identifying
key modules and their interaction. The main focus is on: - integration with the Docker API to perform
operations with containers (e.g. monitoring, starting, stopping, updating and analyzing logs). Next,
integration with the Telegram API is performed to create a convenient management interface via
chat. This includes setting up user communication with the bot, processing commands and sending
notifications; - implementing a system for differentiating access rights. To improve security, user
roles with different levels of authority are designed, which is important for enterprises using a
common infrastructure. At this stage, performance and scalability requirements are also taken into
account so that the bot can operate stably under increased load. The next stage involves writing the
code to implement all the planned bot functions.

Important aspects of implementation:

Connection to Docker: setting up interaction with the Docker Engine to perform basic operations
(for example, getting a list of containers, managing their states, and viewing logs);

Setting notifications: creating a system for automatically sending notifications when the status of
containers changes or failures occur;

Development of mechanisms for creating and storing backup copies of containers.;

Adding functions for checking for updates and applying them automatically or manually;

Designing an intuitive interface for working via Telegram, taking into account convenience and the
minimum number of steps to complete tasks.

After the functionality is implemented, testing is carried out to ensure the reliability and stability of
the bot:

Checking all declared capabilities of the bot for compliance with the technical specifications;

Modeling increased load to test the stability of the system under a large number of requests;

Security testing: checking for vulnerabilities, including assessing the reliability of the access rights
control system;

Bug fixing: identified bugs are recorded and retested to ensure full functionality.

The program's start menu is an interactive panel for interacting with the bot. Among the available
functionality, there is also the ability to subscribe and unsubscribe from receiving notifications about

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

255

changes in container statuses and receiving a regular report on possible updates to container
components.

Below in Figure 1 is presented example implementation of obtaining container statuses

Figure 1 - Implementation of receiving container statuses

Let's look at some functions more details of this code. The get_container_status function connects to
Docker via the docker.from_env() client, gets a list of all containers (including stopped ones) and
generates a message with their statuses (name, ID and state). If no containers are found, a
corresponding notification is displayed. In case of a Docker error (for example, a daemon is
unavailable), it is logged and an error message is sent to the user. After that, the container status is
sent to Telegram using query.edit_message_text, and then the send_start_button function is called,
which adds a button to return to the main menu

Operational receiving Container logging is critical for monitoring and troubleshooting applications
and infrastructure. Logs provide detailed information about events occurring inside container, such
as startup, shutdown, errors, warnings, and other system messages. For example, in the given
fragment of the logs of the container new–zabbix–db, you can see that MariaDB has started
successfully, but there are warnings about the impossibility of using some functions (for example,
io_uring_queue_init() failed with errno 1), which may indicate problems with the configuration or
environment

In this example MariaDB logs show that the database has successfully initialized the buffer pool and
completed startup, but there are warnings about the impossibility of using some functions (for
example, liburing disabled). This can be useful for administrators to understand which functions are
unavailable and how this may affect performance. Promptly obtaining such logs allows you to quickly
respond to problems, minimize downtime and ensure stable operation of the system.

Function prompt_container_selection connects to Docker, gets a list of all containers, and prompts
the user to select a container to receive logs from via interactive buttons in Telegram. If there are no
containers or a Docker error occurs, the user is sent a corresponding message. After selecting a
container in handle_log_request, its name is saved in context.user_data, and the user is prompted to
enter the number of log lines. In handle_log_lines, the entered number of lines is checked, and logs
are requested from the selected container using the Docker API. Logs are split into parts (20 lines
each) and sent to the user in Telegram to avoid message length restrictions.

If arise errors (such as invalid input or Docker issues), the user is notified and send_start_button is
always called at the end to return to the main menu. This allows for convenient querying and viewing
of container logs.

Functional programs allows you to generate a report on available updates. This report is useful
because it informs administrators about available updates to packages (e.g. apt, base-files, libssl3),
including critical security updates to help prevent exploitation of vulnerabilities.

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

256

Function prompt_container_selection_for_action allows the user to select a container to start or stop.
First, it checks if the user is authorized (their name must be in the AUTHORIZED_USERS list). If access
is allowed, the bot gets a list of all containers and creates interactive buttons with their names. The
user selects a container, and depending on the selected action (start or stop), the
handle_container_action function is called.

By using functions handle_container_action bot checks user authorization and performs the
requested action (start or stop a container) via the Docker API. If the container is not found or a
Docker error occurs, the user receives a corresponding notification. If successful, the bot reports that
the request has been completed and offers to enter /start to return to the main menu. This provides
convenient container management via Telegram with restricted access for unauthorized users. The
get_container_list function executes the docker ps –a command to get a list of all containers
(including stopped ones) and returns their names (Korochentsev et al., 2021). The
show_container_list function then creates interactive buttons for each container, allowing the user
to select a container to scan for vulnerabilities. If there are no containers, the user receives a
corresponding notification.

This Telegram bot also implements a system for delimiting the rights to execute critical functions,
such as starting and stopping containers, as well as launching updates, since this functionality can
potentially paralyze the operation of an application, of which this or that container may be a
component.

CONCLUSION

Telegramm-bot for management Docker– containers is a modern software solution created to
simplify interaction with container infrastructure. This tool is aimed at optimizing routine processes
related to monitoring, managing and analyzing containers. The main idea is to provide users with an
intuitive interface that works within the popular Telegram messenger, which minimizes the
complexity of setup and training. Telegram functionality– the bot includes the following key features,
presented below:

The ability to find out the status of containers at any time, obtain information about running
instances, and evaluate their current performance;

The program automatically sends messages about any changes in the state of containers, including
their start, stop, or the occurrence of errors. This helps users to always be aware of what is happening
and responds to critical events in real time;

The program provides the ability to manually start and stop containers, which is especially useful
for performing point operations or in emergency situations;

Performing a full backup of containers and their contents ensures the safety of data and facilitates
the recovery process in case of failures;

The program provides convenient access to container logs on request, which greatly simplifies
problem diagnostics and performance analysis.

Access to container logs by request allows you to define permission levels for different users, which
increases security and prevents unauthorized interference in the system.

The developed methodology for the safe operation of containerization technology is a solution for
convenient and efficient management of container infrastructure based on Docker technology.
Developed as a result of the conducted research program. The product simplifies routine tasks and
increases the productivity of information security specialists, DevOps engineers and system
administrators.

REFERENCES

Amaliev HS, Yakubovich SA. Analysis of cryptocontainer detection during user action reconstruction.
Science Bulletin 2024;2.12(81):1316–1320.

Boydadaev MN. Comparative analysis of the performance of network plugins of the KUBERNETES
orchestrator. Universum: Technical Sciences 2024;1.11(128):38–47.

Revyakina et al. Methodology for the Safe Operation of Containerization Technology

257

Fung WQ, Bogatyrev VA, Karmanovsky NS, Le VH. Evaluation of probabilistic-temporal
characteristics of a computer system with container virtualization. Scientific and Technical
Bulletin of Information Technologies, Mechanics and Optics 2024;24(2):249–255.

Kazaryan MM, Cherckesova LR, Revyakina EA, Safaryan OV, Porksheyan VV. Analysis of the
possibilities of conducting attacks on the functions of transferring control of the operating
system console using active reconnaissance methods. High-tech in Space Research of the
Earth 2024;16(3):18–29.

Korochentsev DA, Cherkesova LV, Revyakina EA. Import-substituting technologies for ensuring
information security and data protection. Rostov-on-Don: Don State Technical University;
2021. 334 p.

Marker VA, Kochegurova EA. Application of containerization technologies for assembly and delivery
of a multiservice web application. In: Youth and Modern Information Technologies:
Proceedings of the XXI International Scientific and Practical Conference of Students,
Graduate Students and Young Scientists, April 15–18, 2024, Tomsk. Tomsk Polytechnic
University; 2024.

Shaidullin DT, Ivanov FYu, Khakulova AS. Containerization in development: modern technologies,
advantages and key approaches. IT & Transport 2025.

Usoltsev DA, Boykov SYu. Containerization technologies: DOCKER and KUBERNETES in 2024.
Vered S, Scheinman V, Kuznetsov M, Kotov A. Improving the efficiency of software development

processes: container technologies. Software Systems and Computational Methods
2024;4:151–161.

Vikhlyaev DR. Deploying a container using Docker Desktop on the Windows operating system.
Postulate 2024;Dec 12.

Vyugov SG, Kozachok AV. A modern approach to monitoring the security of container environments.
In: Grigorov NI, Nikitina EYu, Rabchevsky AN, Chernikov AV, editors. 2025. p. 25.

