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The development of Chinese characters over centuries has a lengthy history 
and is of great value for research. However, examining Chinese calligraphic 
characters can be challenging and requires a comprehensive understanding of 
Chinese history. This paper presents the CCSR (Chinese Calligraphy Style 
Recognition) model for recognizing calligraphic styles, which is based on the 
LeNet-5 model with a new Concat layer that includes weight mean and scaling 
operations. The proposed CCSR model effectively classifies calligraphic styles 
and outperforms traditional recognition methods in terms of accuracy and 
efficiency. Compared to conventional feature extraction methods, the CCSR 
model achieves a recognition accuracy of 98.35%, significantly higher than the 
best traditional methods. When compared with existing deep learning models, 
such as those incorporating Squeeze-and-Excitation (SE) and Convolutional 
Block Attention Module (CBAM) modules, the CCSR model not only achieves 
competitive or superior accuracy but also reduces training time by up to 28.5 
minutes. Furthermore, the CCSR model demonstrates its robustness by 
successfully classifying calligraphic styles from a challenging dataset that 
contains low-resolution and poorly preserved images. The model maintains 
an accuracy of 90.79%, outperforming existing methods in difficult 
recognition conditions. These results highlight the CCSR model’s superior 
performance in both accuracy and training efficiency, particularly in 
challenging scenarios involving low-quality data. 

INTRODUCTION  

Chinese calligraphy is more than just beautiful writing—it's a window into China's rich history and 
deep cultural roots. As shown in Figure. 1, Chinese calligraphy can generally be grouped into five 
main styles: seal script, clerical script, cursive script, running script, and regular script (Gang et al., 
2023). 

The seal script (Figure. 1(a)) is one of the oldest forms, often seen on ancient artifacts and seals, with 
intricate and symmetrical characters. The clerical script (Figure. 1(b)) emerged later, characterized 
by flattened strokes and distinctive end flares, making it more practical for daily use. Cursive script 
(Figure. 1(c)) is expressive and flowing but can be challenging to read at times. The running script 
(Figure. 1(d)) strikes a balance between fluidity and order, resulting in an elegant and readable 
format. Finally, the regular script (Figure. 1(e)) is the most common today, characterized by clear 
and precise strokes. Each style reflects the cultural mindset of its time, showing that Chinese 
calligraphy is both an art form and a legacy. 

 
Figure 1. The Five Styles of "唐". (a) Seal script; (b) Clerical script; (c) Cursive script; (d) Running 

script, and (e) Regular script 
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In addition to the five major classifications of Chinese calligraphy, each calligrapher has their unique 
style. As shown in Figure. 2, even though the four famous Chinese calligraphers: Ouyang Xun, Yan 
Zhenqing, Liu Gongquan, and Zhao Mengfu all used regular scripts, they each had unique and 
distinctive styles. 

 

 

Figure 2. The Four Styles of "为". (a) Ou Style; (b) Yan Style; (c) Liu Style, and (d) Zhao Style. 

The China Academic Digital Associative Library (CADAL), the largest Chinese calligraphy database, 
houses over 40,000 historical calligraphy works (Jin and Huang, 2023). Calligraphy recognition is 
primarily approached using traditional methods or deep learning techniques, such as Convolutional 
Neural Networks (CNNs). Traditional methods focus on two stages: feature extraction, using 
techniques such as Gabor filters (Karunarathne et al., 2024, Wavelet Transform (Zhu et al., 2014), 
Generalized Search Tree (GIST) (Schoemans et al., 2024), Histogram of Oriented Gradients (HOG) 
(Admass et al., 2024), and Scale-Invariant Feature Transform (SIFT) (Weigang et al., 2025), and 
classification, which often uses Support Vector Machines (SVM) (Hou et al., 2021), Euclidean 
distance (Li et al., 2022), or SoftMax classifiers (Alwagdani et al., 2023). 

Traditional recognition methods for Chinese calligraphy are complex, particularly in terms of feature 
extraction and classification. The future focus is on deep learning models, which can achieve effective 
classification by integrating feature extraction and recognition. While traditional methods require 
extensive technical support and are intricate, deep   

learning models, like AlexNet and ResNet (Li, 2016), have gained popularity for improving efficiency. 
However, most existing models have complex structures, making training time-consuming (He and 
Sun, 2015). This paper aims to reduce model complexity while maintaining accuracy. Recent models, 
such as Squeeze-and-Excitation (SE)  (Zhang et al., 2019a) and Convolutional Block Attention Module 
(CBAM)  (Zhang et al., 2021), are effective but feature multiple network structures. Therefore, this 
paper focuses on using a simpler model for accurate Chinese calligraphy classification. 

This study proposes a Chinese Calligraphy Style Recognition (CCSR) model based on the LeNet-5 
deep learning architecture. The model features a simplified structure that improves both training 
and inference times while achieving a recognition accuracy of 98.6%. The introduction of a Concat 
layer enhances feature integration, making the model more precise and computationally efficient. 

Our Key Contributions Include: 

 This study proposes a novel Chinese Calligraphy Style Recognition (CCSR) model that 
integrates the LeNet-5 architecture with an innovative Concat layer. The introduction of the 
Concat layer enables more effective feature integration, significantly enhancing both 
recognition accuracy and training efficiency. Unlike existing methods, the Concat layer 
allows for more precise and efficient feature fusion, demonstrating the innovation of 
maintaining high performance while simplifying the model structure and reducing training 
time. 

 A real-time calligraphy style recognition method is introduced, which dynamically adapts 
to varying data quality, including low-resolution and poorly preserved images. The system 
maintains high accuracy (90.79%) in challenging conditions, outperforming traditional 
methods and deep learning models such as SE and CBAM. 

 The model reduces training time by up to 28.5 minutes compared to other deep learning 
models, providing a significant improvement in both training efficiency and recognition 
accuracy, which makes the CCSR model a more accessible and practical solution for real-
world applications in Chinese calligraphy recognition. 
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The paper is structured as follows: Section “Related work” examines traditional and deep learning 
techniques for recognizing Chinese calligraphy. Section “Methodology” describes the CCSR model 
and the new Concat layer, while Section “Experiments and discussion” describes the experiments 
and their outcomes. Finally, Section Conclusion presents the study's conclusion. 

Related Works 

Traditional Chinese calligraphy recognition involves two main steps: feature extraction and 
classification, with a focus on feature recognition methods. Global features, such as Gabor 
(Karunarathne et al., 2024) and GIST  (Zhang et al., 2013), and local features, including Wavelet 
transform  (Raju, 2008), HOG  (Chen et al., 2016), and SIFT  (Burger W, and Burge M, 2022), are used 
for extraction. However, accuracy rarely exceeds 90%. A hybrid method combining GIST and SIFT 
(Zhang et al., 2019b) achieved an accuracy of 92%, but the process is complex, requiring multiple 
feature extraction steps and Principal Component Analysis (PCA) for dimensionality reduction. Most 
conventional methods employ SVM classifiers, which excel in two-class classification but struggle 
with multi-class classification, necessitating the use of additional classifiers and thereby increasing 
training time (Kurani et al., 2023). Despite advancements, the accuracy of traditional recognition 
methods remains under 90% (Weigang et al., 2025; Zhang et al., 2013; Chen et al., 2016). 

Traditional recognition methods are cumbersome and complex, particularly in the recognition steps 
of feature extraction and classification. Traditional methods usually use manually designed feature 
representations, such as shape, texture, or brushstroke-based feature extraction. These feature 
representation methods cannot accurately represent all calligraphic style features, resulting in 
decreased classification accuracy. Traditional recognition methods also require manual parameter 
adjustments of the feature extraction methods, which can impact the accuracy of feature extraction  
(Zhang et al., 2013). In this case, applying a deep learning model in Chinese character recognition is 
the focus of future development. 

  

(a) (b) 

Figure 3. Structure of SE Model and CBAM Model. (a) SE model, (b) CBAM model. 

In comparison to traditional models, deep learning models have the advantage of being able to 
classify data by learning its characteristics from a large amount of input data. Consequently, deep 
learning models can effectively increase recognition accuracy and decrease processing time. For 
example, the SE  (Zhang et al., 2019a) and CBAM  (Zhang et al., 2021) models have achieved 
recognition accuracies of over 97%. Compared with traditional recognition methods, the SE and 
CBAM models significantly improved recognition accuracy. Zhang, J. et al. added two SE modules, 
increasing the model depth by four layers, which in turn increased the computational requirements 
for both forward propagation and backward propagation, as well as the model complexity (Figure. 
3(a))  (Zhang et al., 2019a). Zhang et al. added two CBAM modules, increasing the model depth by 
six layers, which also led to an increase in computational complexity (Figure. 3(b))  (Zhang et al., 
2021). Therefore, employing multiple sets of SE modules and CBAM modules also increases the 
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depth and complexity of the model, resulting in a longer path for the gradient to propagate through 
the network and increasing the computational effort, leading to a waste of training time. 

Current deep learning models have complex model structures, which result in significant 
computational requirements and lengthy training and runtime times. However, when the model 
structure is simplified by reducing the number of layers, accuracy is again affected (He and Sun, 
2015). Reducing training time and runtime while ensuring accuracy is now a key challenge in 
designing deep learning models. 

The LeNet-5 model is the first deep learning model for classifying handwritten characters and the 
first and most effective model for classifying handwritten units (Nugraha et al., 2023). LeNet-5 
consists of seven layers, including a convolutional layer, a sampling layer, a fully connected layer, 
and an output layer. Due to the lightweight nature of this network, both training time and the number 
of parameters are reduced, making the machine's classification easier. LeNet-5 is not only 
lightweight and effective but also applied to Chinese character recognition, where it achieves high 
accuracy in recognizing Chinese characters (Zaibi et al., 2021). Therefore, the LeNet-5 model is 
chosen as the base model in this study. 

However, the LeNet-5 model also has some problems that can affect recognition accuracy. First, 
LeNet-5 does not include a data normalization operation, which may lead to significant changes in 
the weights and biases of the network, thereby affecting the stability of model training. The LeNet-5 
model employs the Sigmoid activation function, which is an exponential operation with saturation. 
When the input value is very large or small, the output of the Sigmoid function is close to 1 or 0, 
resulting in a gradient close to zero, which will lead to the problem of gradient disappearance and 
slow down the parameter update during the model learning process, thus increasing the risk of over-
fitting (Zaibi et al., 2021). 

Based on the literature, this study proposes a CCSR model with a new Concat layer to reduce model 
training time while ensuring recognition accuracy. Section 3 describes the study's enhancements to 
LeNet-5 and the introduction of the new Concat layer. 

METHODOLOGY 

This section will discuss the improvements based on the LeNet-5 model and the operations included 
in the Concat layer. This section provides a detailed description of the CCSR model. 

A. Improving the LeNet-5 for Calligraphy Style Recognition 

Define abbreviations and acronyms the first time they are used in the text, even after they have been 
defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be 
defined.  

Deep learning has a long history of development. The well-known deep learning expert LeCun 
proposed the pioneering LeNet-5 model, which is widely used to recognize handwritten digits (Zaibi 
et al., 2021). As shown in Figure. 4, there are a total of seven layers (not including the input layer), 
that is, C1 is a convolutional layer with six convolution kernels with a size of 5×5, S2 is a down-
sampling layer (also called a pooling layer), and C3 is 16 convolutional layers of size 5×5, S4 is a 
down-sampling layer, C5, and F6 are two fully connected layers. The final output layer is a 
classification and recognition layer based on radial basis function (RBF). 

 
Figure 4. LeNet-5 Model (Zaibi et al., 2021) 
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Based on the LeNet-5 model, the proposed model will make several modifications and 
enhancements. As shown in Figure. 5, the Batch Normalization (BN) layer is carefully optimized, and 
the Rectified Linear Unit (ReLU) activation function replaces the LeNet-5 model's original Sigmoid 
activation function. The final classification output layer employs SoftMax, thereby generating many 
new convolutional neural network model structures, the BN-LeNet model. 

  
(a) (b) 

Figure 5. Structure Diagrams of the BN-LeNet and LeNet-5. (a) The Structure of the Original LeNet-5; 
(b) The Structure of the BN-LeNet model 

The BN layer is added after the convolutional layer to prevent gradient dispersion during 
backpropagation of the loss function and to accelerate the convergence of the training model. After 
the BN, the nonlinear activation function Rectified Linear Unit (ReLU) is connected to enhance the 
characteristics of the nonlinear transformation (Luo et al., 2021). The complete BN algorithm 
operates as follows: At each Stochastic Gradient Descent (SGD) step, the activation is normalized by 
a mini-batch, ensuring the output has a mean of 0 and a standard deviation of 1. The final "scale and 
shift" operation guarantees that valuable data information is preserved (Segu et al., 2023). 

The Entire BN-LeNet Algorithm Is As Follows, Where Ε Is A Constant: 

 

 In this paper, the activation functions used in the BN-LeNet model structure are all ReLU rather than 
the Sigmoid function used in the original LeNet-5 model. The ReLU function equation is denoted by 
Eq. (1). 
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The Sigmoid activation functions necessitate exponential computation, whereas ReLU only 
necessitates max computation. One of the benefits of the ReLU function lies in the fact that the 
calculation of this function is relatively simple compared to other activation functions and does not 
require a complex computation (Luo et al., 2021). As a result, the ReLU activation function can 
effectively accelerate the training process and shorten the time needed to achieve convergence (Hu 
et al., 2022) 

SoftMax is typically used to solve multi-classification problems, whereas logistic regression is 
generally used to solve binary classification problems. The training data contains the category labels 
yi {1, 2..., k}, which are the values of the k categories. The prediction function of logistic regression 
can be extended to Eq. (2), 

 

where θ1, θ2,..., θK are the model parameters to be trained, and    is the normalization factor 
of the probability distribution to make the sum of all probabilities 1. To derive the loss function for 
SoftMax, define I {•} to denote that the rule for taking values is Eq. (3). 

I {Expressions whose values are true} = 1 

I {Expressions whose values are false} = 0 (3) 

That is, for an input x, the probability that the classification category is j is Eq. (4). 

 

The gradient descent iterative algorithm is still used to solve the minimization problem for the 
SoftMax loss function, and the derivative of the parameter is given by Eq. (5). 

 

The gradient descent iteration can directly update the parameters to minimize the loss function 
according to Eq. (5), which is updated as follows (6). 

 

B. Concat Layer 

Based on the BN-LeNet structure, this section proposes a new Concat layer to improve the model's 
recognition accuracy after the last convolutional layer of the BN-LeNet model. Figure. 6 illustrates 
the architecture of the Concat layer. The output of the fourth convolutional layer is subjected to 
weighting means and scaling operations before the addition of the ReLU activation function. After 
scaling operations, the concat operation is then applied to the output features.  
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Figure 6. Structure of Concat Layer 

The core concept of the Concat layer is inspired by the Mimic Norm, a novel normalization technique 
introduced by Fei et al. to enhance network convergence and training effectiveness. By utilizing the 
principles of Mimic Norm, the Concat layer introduces memory and productivity enhancements, 
contributing to the improved performance of the model (Fei  et al., 2020). 

The Concat layer initially performs the weight mean operation, as determined by the equations 
shown in Eqs. (7) and (8). S represents the initial weight value, "W"  ̂W represents the weight mean 
value in Eq. (7). "Μ" "W" _"I,j" represents the number of input channels in Eq. (8). To meet the 
stability criteria, the weighting parameters are then scaled down by multiplying  "1" /√("1-1/π" ) 
"≈1.2"  (Fei  et al., 2020). As the author removes the mean from each channel, the variance decreases, 
which this scaling compensates for 

 

The output of the convolution layer (with weights mean+scalar+ReLU) is 128 x 4 x 4, indicating that 
128 input channels of size 4 x 4 are used. Using Eqs. (9) and (10), the mean and standard deviation 
are computed in this phase. For each of the 128 input channels, the mean and standard deviation are 
independently calculated. The values are then recombined as the layer's output into a 256-
dimensional vector feature, which is transmitted to the fully connected layer. By calculating the mean 
and standard deviation using the BN algorithm, the concat operation in this layer can improve 
recognition accuracy while reducing overfitting and accelerating training. 

 

C. CCSR Model Structure (BN-LeNet with Concat Layer) 

The structure of the Chinese Calligraphy Style Recognition (CCSR) model is illustrated in Figure. 7. 
The network comprises a total of 10 layers. The first through seventh layers consist of four 
convolutional and three pooling layers. Except for the fourth convolutional layer (the seventh layer), 
each convolutional layer is followed by Batch Normalization (BN) processing and a nonlinear 
adjustment of the ReLU activation function. The eighth layer is the Concat layer, followed by the 
complete connection layer and the SoftMax classification layer. 



Sun et al.                                                                                                                      Enhanced LeNet Model for Chinese Calligraphy Style 

687 

 

Figure 7. CCSR Model Structure 

EXPERIMENTS AND DISCUSSION 

In this section, experiments are conducted to validate the efficacy of the proposed CCSR model. First, 
three experimental datasets—D1, D2, and D3—are developed. Dataset D1 contains samples of four 
calligraphy styles by the renowned calligrapher Yan Zhenqing, spanning different historical periods 
(GXYB, DBT, MGXTJ, and YJMB). Dataset D2 includes four representative styles (Ou, Yan, Liu, and 
Zhao). Dataset D3 is a more challenging dataset comprising five fundamental script types: Seal 
(Zhuan), Clerical (Li), Regular (Kai), Running (Xing), and Cursive (Cao). 

This section then presents three comparison experiments to assess the CCSR model's ability to 
recognize Chinese calligraphy styles. The first experiment compares the CCSR model with traditional 
recognition methods (HOG, GIST, PHOG, GIST+PHOG) using D1. The second experiment compares 
the proposed CCSR model with two existing deep learning models (SE and CBAM) using D2. The third 
experiment uses D3 to demonstrate the model's effectiveness even under poor image quality 
conditions. 

D. Dataset 

This section presents the Datasets D1, D2, and D3, which are Chinese calligraphy datasets used in 
the experiment. Each dataset is described in detail below. 

1) D1: Four Styles of Yan Zhenqing (Zhang et al., 2019b) 

In the experiment on style recognition of different fonts written by the same calligrapher, four 
calligraphic works by Yan from different periods are chosen to analyze the evolution of style by the 
same calligrapher. As shown in Figure. 8, from (a) to (d) are GuoXuji Tablet (GXYB), Duobaota Tablet 
(DBT), MaGu Tablet (MGXTJ), and Yanjiamiao Tablet (YJMB), of which GuoXuji Tablet and DBT are 
his early works, and MaGu Tablet and Yanjiamiao Tablet are his later works.  

 

Figure 8. Four Calligraphic Works of Yan at Different Times. (a) GuoXuji Tablet (b) Duobaota Tablet 
(c) MaGu Tablet (d) Yanjiamiao Tablet 
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Totaling 3000 characters, GXYB has 800-character samples, DBT has 1000-character samples, 
MGXTJ and YJMB each have 600-character samples, and YJMB has 600-character samples. 

2) D2:  Four Calligraphers  (Zhang et al., 2019a) 

As shown in Figure. 9, this dataset includes four styles created by four calligraphers: Tang Dynasty 
Ouyang Xun (Ou), Yan Zhenqing (Yan), Liu Gongquan (Liu), and Yuan Dynasty Zhao Mengfu (Zhao). 
Each of the four styles of calligraphy contains 800 characters, totaling 3200 characters. 

 

Figure 9. Four Famous Calligraphers Styles 

3) D3: Five Types of Script (Challenging Dataset) (Wang  et al., 2020) 

Component heads identify the different components of your paper and are not topically subordinate 
to each other. Examples include Acknowledgments and References and, for these, the correct style 
to use is “Heading 5”. Use “Figureure caption” for your Figureure captions, and “table head” for your 
table title. Run-in heads, such as “Abstract”, will require you to apply a style (in this case, italic) in 
addition to the style provided by the drop down menu to differentiate the head from the text. 

Datasets D1 and D2 are relatively simple to classify, as they are derived from clean, paper-based 
calligraphy works with minimal noise and preprocessing. To validate the model's efficacy, Dataset 
D3 was used, presenting a more challenging scenario. Derived from the MACT dataset (Wang  et al., 
2020), Dataset D3 includes severely damaged calligraphy from ancient books with worn characters, 
making recognition difficult. It contains five main scripts: Seal, Clerical, Regular, Running, and 
Cursive, and is challenging due to blurriness, noise, and imperfections. This dataset, comprising 
works from various scenes, presents a rigorous test case for the model, aiming to enhance 
recognition accuracy in low-resolution, noisy images and achieve optimal results in a shorter 
timeframe. 

          

 

Figure 10. The Five Fundamental Scripts of Calligraphy 

Specifically, Dataset D3 comprises a total of 9,116 samples of Chinese calligraphy characters. There 
are 1820-character samples of seal script (Zhuan), 1798-character samples of clerical script (Li), 
1936-character samples of regular script (Kai), 1805-character samples of running script (Xing), and 
1757-character samples of cursive script (Cao). 

E. Experiment 1-Compare with Traditional Recognition Methods Using D1 

The experiment utilized Dataset D1 to compare the CCSR model with traditional methods. The 
experiment was conducted by categorizing Yan Zhenqing's four styles. GXYB, DBT, MGXTJ, and YJMB 
are the four styles. HOG   (Chen et al., 2016), GIST  (Zhang et al., 2013), PHOG (Zhang et al., 2019b), 
and GIST+PHOG (Zhang et al., 2019b) were the traditional methods compared. The results are shown 
in Table 1. 
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Table 1. The Accuracy Compared with Traditional Methods 

Style/ 
Method 

HOG   
(Chen et al., 
2016) 

GIST  (Zhang 
et al., 2013) 

PHOG 
(Zhang et al., 
2019b) 

GIST+PHOG 
(Zhang et al., 
2019b) 

CCSR 

GXYB 50.83% 86.67% 86.25% 94.58% 99.10% 

DBT 69.17% 90.33% 88.67% 97.33% 99.55% 

MGXTJ 59.17% 84.44% 81.67% 86.11% 97.21% 

YJMB 65.00% 88.89% 84.44% 86.67% 97.56% 

Overall 61.04% 87.58% 85.26% 91.17% 98.36% 

In contrast to traditional recognition methods, the CCSR model achieves higher recognition accuracy. 
The experiments demonstrated that the CCSR model achieved a recognition accuracy of 98.36%. The 
experiment outcomes also demonstrated that the CCSR model outperformed the best traditional 
method (GIST + PHOG) by 7.19%. In summary, the CCSR model outperforms the conventional 
approach in terms of accuracy and recognition efficiency. 

The results visualization of the five approaches is shown in Figure. 11. GIST+PHOG is the most 
effective traditional method for classifying styles, and it performs particularly well in classifying Yan 
Zhenqing's styles. GIST+PHOG achieves higher intra-class compactness. Figure. 11 also illustrates 
that the CCSR model has a greater gap between the different classes and that the data in each class 
is more compactly organized. As a result, the CCSR model achieves the best intra-class compactness 
and inter-class separability, demonstrating that it outperforms all existing recognition approaches. 

    

 

Figure 11. Data Visualization of Five Different Methods. (a) HOG (Chen et al., 2016), (b) GIST (Zhang et 
al., 2013), (c) PHOG (Zhang et al., 2019b), (d) GIST+PHOG (Zhang et al., 2019b), and (e) CCSR. 

F. Experiment 2-Compare with Existing Deep Learning Models using D2 
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In this section, the CCSR model will be compared to two existing deep learning models for 
recognizing Chinese calligraphy styles. Models with SE  (Zhang et al., 2019a) and CBAM  (Zhang et 
al., 2021) were the two existing deep learning models for Chinese calligraphy style.  

According to the models' respective structures, it is proven that the CCSR model has the most 
streamlined structure, with four convolutional blocks and a Concat layer. In the following section, 
experiments are designed to evaluate the recognition efficiency of the three models and the training 
time required to demonstrate that the CCSR model can minimize time consumption while 
maintaining accuracy. 

Figure. 12 shows the relationship between training epochs and accuracy for the three models. The 
CCSR model quickly achieves and maintains the highest accuracy, outperforming the SE and CBAM 
models. All models show declining accuracy after 200 epochs, with no further improvement. Based 
on the training procedure, 200 epochs were determined to be the optimal training duration for all 
three models.  

 

Figure 12. The Relationship between Epoch and Accuracy of Model Training 

The experiment compared two deep learning models for Chinese calligraphy style recognition: the 
SE model  (Zhang et al., 2019a) and the CBAM model  (Zhang et al., 2021). Four calligraphy styles 
were represented in Dataset D2: Ou, Yan, Liu, and Zhao (3200 characters). The experiment analyzes 
explicitly the model complexity and recognition efficiency of the three models by displaying 
recognition accuracy, precision, recall, F1-scores, training time, and running time as experimental 
results. 

Figures. 13, 14, and 15 illustrate the confusion matrix for the three models. Findings show that the 
recognition accuracy of all three models exceeded 96%, with the CBAM and CCSR models achieving 
over 98% across all subcategories. Particularly, the classification accuracy of the CCSR model for Ou, 
Yan, Liu, and Zhao exceeds 98%.  

 

Figure 13. Confusion Matrix for the SE Model. 
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Figure 14. Confusion Matrix for the CBAM Model. 

 

Figure 15. Confusion Matrix for the CCSR Model 

In Table 2, the performance of three models is displayed. The three models comprise the SE model, 
the CBAM model, and the CCSR model. The CCSR model is only 0.1% less accurate than the CBAM 
model, but 0.6% more precise than the SE model. Simultaneously, each of the four CCSR model 
evaluation metrics was close to 98%, indicating the model's validity and stability. The CBAM model 
employs two CBAM modules and multiple convolutional blocks to focus on specific regions or 
features, enabling it to concentrate on particular areas or characteristics, which leads to high 
recognition efficiency but requires significant training resources. However, individual calligraphy 
character classification does not involve very complex feature information. The CCSR model can 
achieve effective style classification with only a single Concat layer for feature concatenation. 
Although the accuracy of the CCSR model is slightly lower than that of the CBAM model, its training 
efficiency is greatly improved, as it does not require complex mechanisms. 

Table 2. The Results for the Three Models (Dataset D2) 

Model 
SE   
(Zhang et al., 2019a) 

CBAM   
(Zhang et al., 2021) 

CCSR 

Precision 97.9% 98.3% 98.2% 
Recall 97.8% 98.5% 98.4% 
F1 97.8% 98.6% 98.3% 
Accuracy 97.8% 98.5% 98.4% 

This section reviews the model's training times, shown in Table 3. The CCSR model's training time 
was reduced by 16.68 minutes compared to SE and 28.48 minutes compared to CBAM. As a result, 
CCSR significantly reduces both training and recognition times while maintaining accuracy. 

Table 3. 200 Epochs Training Time for the Three Models (Dataset D2) 

Model 
SE   
(Zhang et al., 2019a) 

CBAM  
 (Zhang et al., 2021) 

CCSR 

Training Time (min) 57.594 69.391 40.911 
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G. Experiment 3-Compare with Existing Deep Learning Models Using D3 

To further validate the model's validity, Dataset D3 will be employed. In addition, the authors also 
utilize recognition accuracy, precision, recall, and F1-scores to determine model validity and training 
time to determine model complexity. 

Figures. 16, 17, and 18 display the confusion matrices for the three models using Dataset D3. 
Compared to Figures. 13, 14, and 15, the accuracy of all three models decreased, indicating an 
increase in difficulty of recognition with Dataset D3. Figure. 18 also shows that not all the Kai scripts 
are classified as Cao scripts, so achieving high recognition accuracy may be possible if only the Kai 
and Cao scripts are classified. 

 

Figure 16. Confusion Matrix for the SE Model Using Dataset D3 

 

Figure 17. Confusion Matrix for the CBAM Model Using Dataset D3 

 

Figure 18. Confusion matrix for the CCSR model using Dataset D3 
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Table 4 shows the experimental results from Dataset D3, where performance metrics were lower 
than those for Dataset D2. The SE and CBAM models had precision, recall, F1-scores, and accuracy 
below 90%. In contrast, the CCSR model outperformed the others, with all four evaluation measures 
exceeding 90%. It achieved relatively high accuracy for the Zhuan, Li, and Kai scripts, with the Kai 
script reaching 93.63%. However, the accuracy for the Xing and Cao scripts was below 90%. 

Table 4.The Results for the Three Models (Dataset D3) 

Model 
SE   
(Zhang et al., 2019a) 

CBAM   
(Zhang et al., 2021) 

CCSR 

Precision 86.89% 88.50% 90.80% 
Recall 86.77% 88.90% 90.79% 
F1 86.82% 88.69% 90.80% 
Accuracy 86.77% 88.90% 90.79% 

Table 5 discusses the recognition accuracy for each classification. The CCSR model demonstrated 
relatively high recognition accuracy for the Zhuan, Li, and Kai scripts, with the Kai script achieving a 
recognition accuracy of 93.63%. Moreover, the accuracy of the CCSR model was less than 90% for 
both the Xing and Cao scripts. 

Table 6.The Accuracy of Three Models (Dataset D3) 

Model Zhuan Li Kai Xing Cao Overall 
SE   
(Zhang et al., 2019a) 

85.55% 86.52% 90.39% 87.88% 83.51% 86.77% 

CBAM   
(Zhang et al., 2021) 

90.34% 90.57% 94.50% 86.21% 82.86% 88.90% 

CCSR 91.32% 91.82% 93.63% 88.97% 88.21% 90.79% 

Table 6 shows that the CCSR model's training time was reduced by 36.18 minutes compared to the 
SE model and 71.38 minutes compared to the CBAM model. While training times were significantly 
shorter, recognition accuracy on Dataset D3 decreased, and training time increased compared to 
Dataset D2, which suggests that lower image quality and more challenging recognition tasks lead to 
reduced model efficiency. 

Table 6. 200 Epochs Training Time for the Three Models (Dataset D3) 

Model 
SE   
(Zhang et al., 2019a) 

CBAM   
(Zhang et al., 2021) 

CCSR 

Training Time (min) 100.739 135.939 64.558 

CONCLUSION 

This paper improves the LeNet-5 model for enhanced Chinese calligraphy style recognition. The 
improved model includes four convolutional layers, each followed by a pooling and BN layer, with 
ReLU as the activation function. The result is a higher recognition rate for regular script from the 
four great calligraphers. A Concat layer placed before the fully connected layer further optimizes the 
model, resulting in the CCSR model, which has fewer parameters and faster training. The model 
achieved over 98% recognition accuracy on both datasets, meeting the goal of recognizing 
calligraphy style.  

To test its real-world applicability, the study applied the CCSR model to the challenging Dataset D3, 
which includes blurry, noisy, and unclear calligraphy images from various scenes. The CCSR model 
achieved an impressive 90.65% accuracy. Compared to SE and CBAM models, it outperformed them 
in recognition accuracy while reducing training time by 36.18 and 71.38 minutes, respectively, 
demonstrating its efficiency and effectiveness. 

The CCSR model has shown strong performance in recognizing individual Chinese calligraphy styles 
on single-character images. However, future research should focus on its application to multi-
character calligraphy works, which present additional challenges due to complex arrangements and 
varying stroke thicknesses. While attention mechanisms like SE and CBAM focus on spatial and 
channel features, the CCSR model uses a concatenation layer to extract robust features. Investigating 
whether CCSR can maintain high accuracy in multi-character calligraphy and outperform attention-
based models in this more complex scenario would be valuable. 
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